ALYSSA RENATA

DUALITY IN
DOMAIN THEORY

Program
P:o

Denotational Axiomatic
Semantics Semantics
Semantic Space . Program Logic
D, Stone Duality L,

Contents

Introduction 7

1.1 The Simple Imperative Programming Language Imp 7
1.2 Semantic Modelling of Procedures with ImpProc 12
1.3 Reasoning About Programs 13

1.4 Prerequisites 14

Domain Theory 15

2.1 Directed-complete Partial Orders 15
2.2 Algebraic DCPOs 17

2.3 Constructions on DCPOs 19

2.4 Scott Domains 22

2.5 Denotational Semantics of Imp 25

2.6 Solving Domain Equations 27

2.7 Denotational Semantics of ImpProc 31

Duality Theory 34

3.1 Topologizing Domains 34

3.2 Topological Spaces & Locales 36

3.3 Sober Spaces & Spatial Locales 40

3.4 Duality for Sober Spaces & Spatial Locales 41
3.5 Duality for Algebraic DCPOs 41

3.6 Spectral Spaces 45

3.7 Duality for Scott Domains 49

3.8 Approximable Mappings 50

Logics for Program Reasoning 54

4.1 Domain Prelocales 55

4.2 Domain Prelocales for Imp 56

4.3 The Program Logic of Imp 59

4.4 A Comparison with "Wild"” Hoare Logic 66

What Next? 68

5.1 The Compact-open Restriction 68

5.2 Are Elements of Domains Possible Worlds or Possibilities? 68
5.3 Accessible Categories as Generalizations of Algebraic DCPQOs 69

Bibliography 70

CONTENTS 5

6 DUALITY IN DOMAIN THEORY

SpecSp =~ SpecLoc

O

SpecSp+

DLat

~

SpecLoc+

SpecAlgSp, _cp

SpecAlgSp

~ Scott ~
2/3BifAlgDCPO
DLat+ AlgDCPO
Sob ~ SLoc
% pt(-) %
Top—— 1+ ————loc
Q

SpecAlgLoc, _p

SpecAlgLoc

SCohSp

~

SCohLoc

1
Introduction

We give meaning to our programming languages so that we can rea-
son about the correctness of the programs we write. This happens at
an informal level: we intuitively understand an assignment statement
x := 2 to modify some variable store x such that it has value 2, and
may then reason that subsequent uses of x are synonymous with 2
until we re-assign its value.

In the study of programming language semantics, we take this pro-
cess a step further by assigning a formal meaning to each well-formed
program in the language, so that we may reason mathematically about
programs. This is called denotational semantics. Following our intu-
ition for now, a program represents a transformation on the machine
state, so we can represent programs as functions between represen-
tations of the machine state (i.e. the machine’s memory). As we will
soon see however, we encounter some deep problems when trying to
do this in a naive way using sets.

This failure motivates the need for domain theory, which, broadly
construed, is the study of mathematical structures capable of mod-
elling computational processes. Note that while domain theory stud-
ies the mathematical theory of such structures in and of themselves,
denotational semantics refers to the application of such structures for
modelling. The two fields are deeply connected!, and heavily influ-
ence one another.

1.1 The Simple Imperative Programming Language Imp

Consider the following imperative language. It contains the standard
constructions one would expect from an imperative language, includ-
ing a while loop command. Unlike real languages, we only allow the
assignment of numbers to variables, to keep things simple.

(Command) ::= if (BExp) then (Command) else (Command)
| while (BExp) do (Command) | def (Var) := (AExp)
| (Command) ; (Command) | skip

(BExp) == tt | ff | (AExp) = (AExp) | (AExp) <= (AExp)
| (Bool) and (Bool) | (Bool) or {(Bool) | not (Bool)

! they’re invented by two people work-
ing together: Dana Scott & Christopher
Strachey. The former developed the do-
main theoretic side while the latter de-
veloped the denotational side.

8 DUALITY IN DOMAIN THEORY

(AExp) == n € Z | (Var) | (AExp) - (AExp) | (AExp) + (AExp) |
(AExp) * (AExp)

Naturally, we expect the arithmetic expressions to denote integers,
and the boolean expressions to denote one of the truth values 2 =
{tt, ff}. The operations forming our expressions above should have
their expected denotation: the + means addition and so forth. The
only question now is, what should the variables denote in an arith-
metic expression? Clearly, the intention is that the programmer is al-
lowed to set the value of a variable to a number using the assignment
command. Therefore, our machine state has to keep track of this in-
formation, which we then use to figure out what the variables should
denote. Since this is the only aspect of the machine state accessible to
the programmer, we can simply model states as functions

Y= (Var) - Z

[-1s: (BExp) =2
[tt], = ¢

Iffl, = ff

assigning an integer to each variable.
Then, given a state s € X, we can give a denotation for each such

expression, as shown on the right. In general, we write [E] for the [Bi and Bs], = [Bi], A [Bal
denotation of an expression E. [By or Byl = [Bil, V [Bal,

Now, we attempt to model the commands. As previously men- [not B], = —[BI],
tioned, we can view a command as something which modifies the [A1 = A2l = ([A1], == [A2],)
current state, so we should be able to denote commands as functions [A1<=Az]s = ([A1]; < [Az]s)
X — X. Let’s try that, starting with the simplest commands.

The skip command does nothing, so it should be denoted by the [~]s : (AExp) = Z
identity function on X. E”ﬂe Z]]s(:) "

. . X|s = s{x
(skp] = i 41~ A2l = [41], - [4:],

The def command assigns the value of an arithmetic expression A [Ar + Az]s = [Ai]s + [A2];

to variable x. So it should first evaluate A, and then take the state [A1 * Az]s = [Aa]s x [A2]s

whose x-value has been modified to be [A].
[def x := A] = (s — s[[A], /x])

The sequencing command runs one command after another, which
is just composing the two modifications:

[Ci; Co] = [Co] o [C]

The if command evaluates a Boolean expression B and evaluates
one command or the other depending on whether B evaluated to true
or false.

[if B then C; else Cy] = (s — if [B], then [C1] (s) else [C2] (s))

Finally, the while command checks a boolean expression B, and
then evaluates the command C if it is true, then checks B, and then
evaluates C, and so on until B is not true. How can we model this
mathematically? Well here’s a clever trick. This is just the same as

saying check B, and if it is true, run C and then run the exact same
while command again.

[while B do C]] = (s ~— if [B], then [while B do C]o[C] (s) elses)

This is all well and good, until you try to evaluate a program that
doesn’t/shouldn’t terminate on certain inputs, like

while x >=0 do skip

If you are a diligent human being evaluating this program accord-
ing to the definition we just gave, then what happens is that you will
also not terminate, as long as x starts off larger than 0. Indeed, let’s
try it with x = 10:

[while x>=0 do skip] ([x — 10])
= if 10 > 0 then [while x>=0 do skip] o [skip] ([x + 10]) else [x — 10]
= [while x>=0 do skip] o [skip] ([x — 10])
= [while x>=0 do skip] ([x — 10])

The first immediate observation is that a command does not al-
ways denote a total function ¥ — X, since as the above example
shows, some commands may be undefined under certain starting states.
Hence, we have to expand our space of denotations to include partial
functions. The second observation is that, viewing the definitions we
gave as a rewrite rule indeed yields undefinedness. However, view-
ing it as an equation where the [while B do C] value is an unknown
to solve for, then we can in fact find functions ¥ — X satisfying the
given equation. For example, considering our example before, the
identity function is one such solution. However, it is not the unique
solution: we can also consider the function which increments states
with x-value above 0:

s ifs(x) <0
s[s(x) +1/x] otherwise

S

This suggests our endeavor was not rotten to the core: the defini-
tions we gave are satisfiable, just that we don’t have a canonical way
of picking the right solution. In fact, the move to partial functions
fixes this problem. The key idea is that we can view partial func-
tions as approximations of the total functions. More generally, given
two partial functions f,g : ¥ — %, if g(s) is defined and equal to

INTRODUCTION 9

f(s) whenever f(s) is defined, then we say that f approximates? g. 2This is not standard use of the word

In other words, g carries all the information that f does, and possibly

"approximate” in domain theory, for the
notion of approximation is usually de-

more. We denote this relation as f T g, which turns ¥ — X into a fined as a more restrictive relation on el-
poset. ements of a domain. But for now it gets

Let us now re-inspect our example of while x >=0 do skip more
closely. We see that any solution to the corresponding equation must
map states with x-value < 0 to the same state, but that it is free to do
anything on other states! This suggests that the information of what

the point across.

10 DUALITY IN DOMAIN THEORY

the solution does to states with x-value > 0 is irrelevant to solving
the equation. Therefore, we might as well take the minimal solution,
which is the partial function

£(s) = s ifs(x) <0

undefined otherwise

In mathematical terms, this corresponds to taking the meet or great-
est lower bound of all solutions to the equation. The nice thing is that
the minimal solution seems to correspond to our computational intu-
ition: the function f is only defined on states with x-value where our
intuition tells us it should terminate (and vice versa). However, the
method by which we obtained the minimal solution is not very com-
putational, in the sense that it does not correspond to our original
idea of computing [while B do C] recursively in terms of itself. In
our original definition, the denotation is only well-defined on a state
s if the recursion is well-founded: i.e. at some point in the recursive
process, we take the "else" case which does not contain a recursive call
to [while B do C], and so we are able to stop the recursion.

We can view this bottom-up instead of top-down: knowing noth-
ing about the next recursive call, what are the states s on which we
can already compute [while B do C](s)? It's exactly those states s
for which [B]; is false, since those don’t contain the recursive call.
Now, repeating this process: now knowing this information on the
next recursive call, what else can we compute? Well it will be those
states s’ s.t. s = [C] (s) for some s with [B],. We can keep this itera-
tive process going, and in the "limit" compute the minimal solution.

To express this formally, we need two ingredients: first, an element
of 2. — ¥ which represents the empty approximation, and second, a
function which given the denotation of the next recursive call, com-
putes the current denotation of [while B do C]. The empty approx-
imation contains no information, so it stands to reason that it should
approximate any element of ¥ — X, albeit in a vacuous sense. Indeed
Y. — Y has a least element 1, also called the bottom element, which
is the partial function undefined on all inputs. For the second ingre-
dient, this has to be the definition of [while B do C], except with the
recursive call replaced by the argument. Hence, we obtain a function
Fgc: (2 —X) — (X — X), defined as

Fgc(f) = (s — if [B], then f o [C] (s) else s)

Solutions of the equation expressed by [while B do C] correspond
to fixpoints® of Fg c and we are seeking to compute the least fixpoint.
Expressing this computation amounts to constructing the following
sequence of approximations

LC Fpe(L) C Fpe(Fpe(L) T ... CFAc(L) C ...

and taking the denotation of the while loop to be the "limit" of this
sequence.

%i.e. those elements f s.t. f = Fgc(f).

To illustrate this process, we consider our original example, where
the minimal solution can be computed in one step. For a second ex-
ample on the other extreme end, we consider the factorial program,
for which we only obtain the fixpoint after infinitely* many steps.

Example 1.1.1. In our original example, the corresponding higher-order
function is

ifs(x) >0
s otherwise
Therefore, taking f =1, we have
s ifs(x) <0
undefined otherwise
But then we also have that

F2(1)(s) = {s ifs(x) <0

undefined otherwise
Hence, F(L) = F(F(L)) = F(F(F(L))) = ..., so the limit of the
sequence F™" (L) is F(L).

Example 1.1.2. The higher-order function associated with the while-loop on
the right is

fsly/s(y) x s(x)][x/s(x) —=1]) ifs(x) =1

s otherwise

E(f)(s) ={

Clearly, the first iteration will be undefined except when the x-value is
less than 1.

I E ifs(x) <1
FL)e) = {undeﬁned otherwise

In the second iteration, we get also the value for when s(x) = 1.

F(E(L))(s)
_ s ifs(x) <1
F(L)(sly/s(y) x s(x)][x/s(x) =1]) ifs(x) > 1
s ifs(x) <1
= 5ly/s(y) xs()][x/s(x) = 1] ifs(x) =1
undefined otherwise
s ifs(x) <1
= sly/s(y) xA[x/0] ifs(x) =1
undefined otherwise
And so on...
s ifs(x) <1
sly/s(y) x 1][x/0] ifs(x) =1
F(F(F(L =
FEEDO =N dyssty) <1< 2] ifsto) =2
undefined otherwise

INTRODUCTION 11

*This doesn’t mean that its not feasi-
ble, because for any particular starting
state s we can still find an approxima-
tion which is defined on s after finitely
many steps.

def y :=1;

while (x >= 1) do (
def y =y * x;
def x :=x -1

12 DUALITY IN DOMAIN THEORY

In the limit, we have that

|) s ifs(x) <1

Since we start off by setting y to be 1, the denotation of the overall pro-
gram becomes:

sly/1] ifs(x) <1
sly/s(x)![x/0] ifs(x) =1

S —

In other words, this program computes the factorial of x and stores it in
y.

Our investigation here reveals the inadequacy of interpreting pro-
grams in the category of sets, and requires us to make the move to
certain posets, which we shall call domains, whose properties abstract
that of the poset X — X.. Specifically, domains carry those properties
that were necessary in computing the least fixpoint. This means the
structures we consider are posets with certain "limits", and the maps
between them are functions that preserve these limits, i.e. "contin-
uous" functions. As we will motivate later, our intuition on what a
computable function is requires that computable functions are continu-
ous. This is the slogan of domain theory.

The main focus of chapter 2 will be exploring the mathematical
theory of domains. As we will see, there is no single formal notion
of domain, so when we say "domain" we refer vaguely to any of the
suitable formal definitions we will define.

1.2 Semantic Modelling of Procedures with ImpProc

In the toy language of the previous section, a key tool in modern pro-
gramming languages is missing: the ability to define and later re-use
procedures. How can we semantically model such behavior? Let us
agree for simplicity that defining a procedure simply assigns a com-
mand to a procedure name, without allowing any explicit input or
output variables to the procedure®. We add to the grammar the fol-
lowing commands:

(Command) == ... | def (ProcName) := (Command) | run (ProcName)

and call this language ImpProc.

Let us now try to see what changes we need to make to the seman-
tic model from the previous section. For one, we need to modify the
state model X to allow it to store procedures, so it has to be

X = ((Var) — Z) x ({ProcName) — (£ — X)).

But hold on, this already seems fishy... We are asking for ¥ to con-
tain a copy of the space of all functions from > — X. As we know
thanks to Cantor, there is no (non-trivial) set with this property, even
if we weaken the equality = to an isomorphism =. However, we have

° Of course, one can still put the inputs
in some variables and have the proce-
dure read those variables, and similarly
the procedure can pass an output by as-
signing it to some pre-determined vari-
able(s). So there is really no loss of ex-
pressivity here.

previously established sets to be insufficient for the modelling of pro-
gramming languages anyway. The solution then is to consider X. itself
as a domain. Its defining criterion is that it should satisfy the equation
above (up to isomorphism). As we have also seen before, this can be
rephrased as asking for a least fixpoint of

F(D) := ((Var) — Z) x ({ProcName) — (D — D))

In this scenario, we have to consider F as an endofunctor on the
"category of domains"®. As we will see, suitable categories of do-
mains will allow us to systematically compute the least fixpoint of a
functor by a similar "limiting process" as we did in the previous sec-
tion. We call equations such as the one above domain equations.

Our restriction to considering only the continuous maps is pre-
cisely what distinguishes "the category of domains" from the cate-
gory of sets. There are too many set-theoretic functions! They grow
exponentially. On the other hand, there are few enough continuous
functions that we can find domains whose continuous functions can
be suitably embedded inside itself. Moreover, the continuous maps
are sufficient since they include the computable functions, as per our
slogan.

1.3 Reasoning About Programs

The use of "limits" and "continuity" suggests that there are topological
ideas underlying our notion of domains. Indeed, the order-theoretic
development of domain theory in chapter 2 can be recast in terms of
topological spaces, and this is what we will do in the beginning of
chapter 3. The starting observation for this topologization is that if
C is an ordering of the information content in domain elements, then
we can analyze this relation in terms of the properties exhibited by
elements:

x Epy <= for every property P of x, y also exhibits P.

Taking the properties to be subsets of a domain D, this says that
any property has to be upwards-closed with respect to Cp, and the
upwards-closed subsets of D forms a topology on D. However, this
is not the topology we want - we have to further restrict to the set of
properties which are "finitely observable", so that our notion of "limit"
and "continuity" correspond to the actual topological notions. More
about this is said in chapter 3.

The topologization of domains allows us to apply the techniques
of Stone duality, which says that we have dual correspondences be-
tween certain (categories of) spaces and (categories of) logical theo-
ries. Equipped with the view that a category of domains is a category
of spaces, Stone duality gives us a logical system for reasoning about
programs. This application of Stone duality to domains is originally
due to [Abr91], although that paper is somewhat lacking in exposi-
tion about the underlying duality itself. In this report, we aim to give

INTRODUCTION 13

¢In quotes because as we mentioned,
there are multiple suitable notions of
domain, none of which are the canoni-
cally correct choice in all scenarios.

14 DUALITY IN DOMAIN THEORY

a more well-rounded introduction to domain theory and specifically
its duality-theoretic aspects. Most of chapter 3 will be about sowing
the seeds of Stone duality with an eye towards domains. This chapter
fills in the missing exposition on domain-theoretic duality needed to
properly understand [Abr91]. In chapter 4, we reap the benefits of
what we sowed to create "off-the-shelf" program logics whose struc-
ture is essentially determined by the underlying domains. In this
chapter, we will focus more on exposition and less on proofs since the
proofs can be found in [Abr91]. We also give a concrete and simple
example by constructing a program logic for the imperative language
introduced in this chapter, and compare it with Hoare logic, which is
the standard program logic for reasoning about imperative programs.

1.4 Prerequisites

We assume that the reader is familiar with imperative programming
languages, at least to the extent of being able to understand the lan-
guages we introduced in this chapter. On the mathematical side, we
assume the reader is familiar with the basic language and definitions
of category theory, specifically functors, limits/colimits and adjunc-
tions. We also assume familiarity with point-set topological notions,
the most prominent being compactness which plays a big role in mak-
ing everything work.

2
Domain Theory

2.1 Directed-complete Partial Orders

Following the motivations laid out by the previous introductory chap-
ter, we introduce a category of posets with certain limits. In a poset,
a limit of a sequence of increasing elements can be understood as its
least upper bound! (LUB) or join, so we are really asking for posets ! AKA a colimit, in categorical terminol-
with certain LUBs. O8Y-
Working with sequences is finicky, and will often require us to
make arbitrary choices. To avoid this, we introduce instead a gener-
alization of sequences called directed subsets, and ask for least upper
bounds of such subsets to exist. It can be shown that the existence of

2

LUBs for sequences” correspond to the existence of LUBs for directed 2of arbitrary ordinal length, not just

subsets countable.

Definition 2.1.1. Let (D, C) be a partially ordered set. A non-empty
subset A C D is directed if for every x,y € A thereisz € As.t. x C z
and y C z. We also say that a least upper bound | | A is a directed join
if A is a directed subset.

In addition to the limits, the computation of least fixed-points also
relies on the existence of the bottom element, so we enforce this as
well.

Definition 2.1.2. A poset (D, C) is directed complete if every directed
set A in D has a least upper bound, denoted | | A, and D has a least
element L.

We make the abbreviation DCPO for directed-complete partially
ordered sets.

Example 2.1.3. Recall the Y. — Y. poset we introduced in the previous chap-
ter. This poset is directed-complete with the join defined as taking the union

of the graph® of the functions. It has a bottom element being the function *ie. the input-output pairs
that is undefined on all inputs. In fact, for any sets A, B, the poset A — B

is directed-complete. N,

Example 2.1.4. Given any set A, we can construct the free DCPO A =

AU{L}, which is just an order wherea C b <= a=1Va=0>,ie. it 0 \ % / 2
is a flat order where any two distinct elements of A are incomparable and L N

is below everything else.

16 DUALITY IN DOMAIN THEORY

Example 2.1.5. (Tapes [Plo83]) Suppose we have a turing machine (TM)
with an input tape and an output tape. The tape squares can be blank, or,
after printing, contain a 0 or a 1. The observable events that can occur are
the printing of a 0 or a 1 on an output tape square. Hence, the DCPO
Tapes consists of the space of possible sets of events that can occur, ordered
by subset inclusion. Equivalently, this is the set of all finite or infinite binary
sequences with the subsequence ordering.

Example 2.1.6. (Pw [Plo83]) Taking a different view of what constitutes
an output event, we can obtain a different DCPO from the same TM situ-
ation. If we agree that outputting a 0 followed by n 1s and then another 0
constitutes outputting the natural number n, then the appropriate DCPO is

Pw.

As previously mentioned, the appropriate notion of mapping be-
tween DCPOs consists of functions that preserve directed joins, i.e.
continuous. This allows us to form the category DCPO of DCPOs
with continuous functions as morphisms.

Definition 2.1.7. A function f : D — E between DCPOs is
1. monotone, if forall x,y € D, if x Cp y then f(x) Cg f(y).

2. continuous, if it is monotone and for all directed subsets A C D, we

have f(LJA) = LI f[A].
Proposition 2.1.8. 1. The identity function idp : D — D is continuous.
2. The composition of continuous functions is continuous.

If we think of such a mapping f as a program transformation, then
monotonicity is saying that if x approximates y, then the transforma-
tion must act the same on x as it acts on the part of y approximated by
x. The continuity condition means that the program transformation
does not behave erratically in the limit: if 4 is built up from a sequence
of approximations | | A, then f(d) = f(||A) is built up from how it
acts on the approximations, i.e. || f[A]. Both of these are behaviors
one would expect from a computable function, so the slogan is there-
fore:

Computable functions are continuous!

However, note that we do not ask for these mappings to preserve
the bottom element. Indeed, requiring f(L) =_L means that the limit
Len f"(L) is always going to be L, which is not what we want.
From a more intuitive perspective, we want f to act as an information-
adder, in the sense that every application of f contributes additional
information. We are then seeking the minimal element which is f-
saturated, i.e. which already contains all information f can contribute
to it. Forcing f(L) =1 means that L is f-saturated, meaning f isn’t
actually adding any information at all.

We are now in position to prove the fact that | |, f"(L) is in fact
the least fixed point.

Theorem 2.1.9. Let f : D — D be a continuous function. Then

1. Upen f*(L) is a fixed point of f.

2. For any fixed point d of f, we have | |, f"(L) C d.

Proof. 1. f(Lluen f*(L)) = Unen "1 (L) = Unen f"(L)-

2. It suffices to show that each f"(L) C d. But LC d is always true,
so by monotonicity of f, we have (L) C f"(d) = d.
O

2.2 Algebraic DCPOs

In the poset . — X of the previous chapter, every element can be
constructed as the least upper bound of a sequence of finite partial
functions?. From a computational point of view, this is desirable be-
cause it means the DCPO is finitely generated, i.e. we only have infi-
nite elements arising in the limit of computations on finite elements.
Moreover, as we will see later from the topological perspective, this
property® is what allows us to apply Stone duality.

To express this property on an arbitrary domain, we have to figure
out a way of expressing "finiteness” in a purely order-theoretic way.
The key tool here is the least upper bounds. If we have a finite partial
function f, then given any sequence of finite partial functions (g),eN
containing f in the limit, at some point g, in the sequence we must
already contain all of f, since f only contains finitely many entries.
This is not true if f is infinite, for example consider a partial function
f :IN — N that is defined on exactly the even numbers.

Definition 2.2.1. Let D be a DCPO, and x € D. The element x is
compact if for any directed subset A C D, whenever x C | | A, there is
some a € As.t. x C a already.

Note that we called it "compact" and not "finite". The reason for this
is that it doesn’t quite fully capture our intuitive notion of finiteness.
For example, the ordinal 2w + 1 is directed completeé, but its com-
pact elements consist of the successor ordinals, including the infinite
ones such as w + 1. The successor ordinals are "compact'” in the topo-
logical sense: using a sequence, one cannot infinitely "procrastinate”
approaching the successor ordinal. This is quite a weird example that
one doesn’t typically encounter in denotational semantics. For more

conventional DCPOs, this adequately captures finiteness.
Example 2.2.2. 1. The bottom element is compact in any DCPO.
2. Every element is compact in a flat or finite DCPO.

3. The compact elements in the powerset lattice P A are exactly the finite
ones.

We can now express what it means for a DCPO to be "finitely gen-
erated".

DOMAIN THEORY 17

*ie. those that are defined on only
finitely many inputs.

® There are weaker properties that also
allow this, such as with continuous do-
mains. See [AJ95] for details.

°It is easy to check that any successor
ordinal is directed complete, while no
limit ordinal is directed complete.

7In fact, this definition is a generaliza-
tion of the topological notion of com-
pactness. If we apply this definition to
the lattice of open subsets of a space in-
stead of a DCPO, this yields the stan-
dard notion of topological compactness.

18 DUALITY IN DOMAIN THEORY

Definition 2.2.3. Let D be a DCPO.
1. Let KD denote the subposet of compact elements in D.

2. Let |kx = | xNKD denote the subset of compact elements below

x € D, also called its set of approximations®.

3. D is algebraic iff for every element x € D, | kx is directed, and

x = Jkx

4. Let AlgDCPO denote the full subcategory of DCPO containing
the algebraic DCPOs.

We will now build up some results showing that the behavior of
any element x in an algebraic DCPO D is determined by its approxi-
mations. This will culminate in a representation theorem for algebraic
DCPOs in terms of their subposet of compact elements.

Proposition 2.2.4. Let D be an algebraic DCPO. Then

1. xCpyiff {xx C Ly, and
2. if AC Disdirected, |x||A =Usea {xa

A particular corollary of the above is that x = y iff | xx = | ky.
If every element is determined by some directed subset of compact
elements, then given just the compact elements KD we can recover D
as the poset of directed subsets of KD. Well, this is almost true except
that an element can arise as the join of many different directed sub-
sets. Therefore, we have to choose a canonical representative directed
subset. For this, we can take the maximal one, AKA the downwards
closed one.

Definition 2.2.5. Let P be a poset. An ideal is a downwards closed
directed subset of P. We denote the poset of ideals in P by Id1(P).

Proposition 2.2.6. Let A, B C KD be directed subsets. Then
1. JkAand | B areideals in KD; and
2. HA=UBiff |xA=]kB.
Using this, we can develop the representation theorem of algebraic
DCPOs by their compact elements.
Theorem 2.2.7. Let P be a poset.

1. Themapi: p — |pisan order embedding P — 1d1(P), with the image
of i being K(1d1(P)). In other words, the compact elements of Id1(P) is
exactly P.

2. 1d1(P) is an algebraic DCPO.

3. Let f : P — D be a monotone map. Then it extends uniquely® to a
continuous map 1d1(P) — D.

Corollary 2.2.8 (representation theorem for algebraic DCPOs). Every
algebraic DCPO D is isomorphic to the ideal completion of a poset, specifi-
cally D =2 1d1(KD).

8 This is where the use of the word "ap-
proximation" starts to become more spe-
cific than the use in the introductory
chapter.

%i.e. there is a unique map f : Id1(P) —
D making the following diagram com-

mute:
P

1d1(P)

__ S b
s
By category theory, this makes Id1(—)

into a functor left adjoint to the forgetful
functor U : AlgDCPO — Pos.

2.3 Constructions on DCPQOs

In this section, we explore the basic constructions in the category of
(algebraic) DCPOs. Many of the structures we need in denotational
semantics can be obtained by performing these constructions on some
basic DCPOs. Moreover, we want the constructions to be functorial,
because we also want to solve for the least fixpoints of functors de-
fined as composites of these constructions, as motivated in the previ-
ous chapter.

For brevity, we omit many of the proofs in this section, since they
amount to a lot of routine verification of categorical properties. We
refer to Chapter 2 of [SLG94] for the proofs, which this section mostly
draws from.

2.3.1 Lifting DCPOs

Given a set S, how can we "freely" generate a DCPO? We can do so
by adding a bottom element to S, and ordering it such that any two
elements of S are incomparable, and the bottom element is below ev-
erything else. Of course, we can do this not just for a set S, but for any
poset P, although in that case it will not be directed complete unless
P itself already has directed joins.

Definition 2.3.1. Let (P, <) be a poset. The lift P, is theset PU{ L}
along with the ordering

x<y ifx,yeP
xCp y < (true ifx=1
false ify =1

Proposition 2.3.2. If P is a directed complete poset, then
1. P, isa DCPO;
2. KP, =KPU{Ll};
3. if P is an algebraic DCPO, then sois P, .
As usual, we functorialize our construction.

Definition 2.3.3. Let (—), : DCPO — DCPO be the functor which
assigns a DCPO D to D, and any continuous function f : D — E to
the function f| : D; — E,| defined by

f(d) ifdeD

A@D=0 il

2.3.2 Product of DCPOs

Definition 2.3.4. Let D, E be posets. The product D x E is given by
the cartesian product of D and E as sets, endowed by the ordering

(d,e) CDxE (d/,(?/) — d Cp d ande Ce e.

DOMAIN THEORY 19

20 DUALITY IN DOMAIN THEORY

Moreover, we have monotone projection maps 711 : D x E — D and
my: DX E — E.

Proposition 2.3.5. Let D, E be DCPOs. Then

1. D x Eisa DCPO and the projection maps are continuous;
2. K(D x E) =KD x KE;
3. if D and E are algebraic then so is D x E.

Proof. The proof of 1. is a routine verification after observing that
LS = (Um(S), Uma(s))

For 2, it is clear that a pair of compact elements (d, e) is compact in
the product. On the other hand, if we have a pair (d, e) that is com-
pact, then we can see that d is compact as follows. Given a directed
subset S C D, define the directed subset S’ = {(s,e) | s € S}. Then
since (d,e) C | |S, there is some (s, e) such that (d,e) C (s,e),i.e. d C
s. The proof that e is compact is completely analogous. 3. then follows
fairly quickly from 2. by considering that | k(d,e) = | kdx |ke. O

Next, we characterize the continuous functions into and out of the
product. The latter is the universal property which shows that the
product of DCPOs is indeed the categorical product in the category
of DCPOs.

Proposition 2.3.6. Let D1, D;, E be DCPOs.

1. A function f : D1 x Dy — E is continuous iff f is continuous in each
argument, i.e. f(d,—) is continuous for each d € Dy and f(—,d) is
continuous for each d € Dj.

2. For any two continuous functions f1 : E — Dy and f, : E — D,
there is a unique continuous function (f1, f») : E — Dy X Dy such that

10 (f1, f2) = f1and o (f1, f2) = .

Note that while the universal property of the product is stated in
the category DCPO, since the full subcategory of algebraic DCPOs
is closed under products, this is also the correct notion of categorical
product in AIgDCPO. Moreover, as is standard in category theory,
the universal property of the categorical product allows us to lift it
into a functor.

Definition 2.3.7. Let — x — : DCPO x DCPO — DCPO be the func-
tor which assigns to any pair (Dj, D;) the product Dy x D5, and to
any map of pairs (f1, f2) : (D1,D2) — (E1,Ep) the map f1 X fo =
(f1 0 1, f2 0 M) induced by the universal property of the product, as
in the diagram on the right.

Moreover, this functor restricts to

— x — : AlgDCPO x AlgDCPO — AlgDCPO.

D1<TD]><D2L>D2

D+ DyxDy,— "% D,

‘ 1 3!flj><f2 fz‘

Ej«— ' EixE—2 5 F

The product construction means that in D x E there are elements
of the form (L,e) or (d, L). If we consider the product to be the
type of tuples in a programming language, and interpret L as a non-
terminating computation, this does not always make sense since for
example in Python we would expect the operation of forming a pair to

not terminate if one of its argument doesn’t terminate!,i.e. (L, e) =1L.

We can define a product construction in which this is indeed the
case, although of course it loses the universal property in DCPO.

Definition 2.3.8. Let D and E be DCPOs. We define the strict product
D ® E to be the poset (D — {L}) x (E—{L}), where the ordering
on the poset D — { L} and E — { L} are inherited from D and E.

2.3.3 Coalesced & Separated Sum

We have discussed the product of DCPOs, but what about the coprod-
uct? Between posets, we have the following notion of coproduct:

Definition 2.3.9. Let P and Q be posets. We define an order on the
disjoint sum P & Q defined by

Xx<pyoly < x<py€Porx<pyecQ

Of course, given DCPOs D, E, the poset D & E is no longer a DCPO
- it does not have a bottom element, even if it is directed complete.

We can rectify this by using lifting, but unfortunately the notion we

obtain will not be the categorical coproduct!?.

Definition 2.3.10. Let D and E be DCPOs. Let the separated sum be
D+E:=(DWE),

Note that the separated sum has three "bottom" elements, which
is the one inherited from D, the one from E, and the real bottom ele-
ment. As before, we can also define a strict version which collapses
all these bottom elements together.

Definition 2.3.11. Let D and E be DCPOs. The strict sum D @ E is the
DCPO (D —{L}H)W(E—-{L}))..

Note that the separated sum can be recovered from the strict sum
by taking D +E=D| ©E,.

2.3.4 Function Spaces

Definition 2.3.12. Let D and E be DCPOs. Then the function space
[D — E]istheset {f : D — E | f continuous} equipped with the
ordering

fEipsp § < VdeD.f(d) Cg g(d).
There is an associated evaluation map ev : [D — E|] x D — E defined

by ev(f,d) = f(d).
Theorem 2.3.13. Let C, D, E be DCPOs.

DOMAIN THEORY 21

10 A programming language that tries
to evaluate the arguments to a func-
tion call before evaluating the function
is called an eager or strict programming
language. Your typical imperative pro-
gramming languages such as Python
and Java are eager. A standard example
of a language that does not behave like
this is Haskell, which is usually called a
lazy language in contrast.

mand in fact, DCPO cannot have co-
products, since the combination of do-
main equations, cartesian closure and
coproducts do not play nice [HP90].

22 DUALITY IN DOMAIN THEORY

1. Then [D — E]isa DCPO, with least element Ad. Lg,and if S C [D —
E| is a directed set, then

(LIs)@) =J{f(@) | f € s}
2. The evaluation map ev : [D — E| x D — E is continuous.

3. Given a continuous function f : C x D — E, there is a unique contin-
uous function curry(f) : C — [D — E] such that it makes the diagram
on the right commute, i.e. ev(curry(f)(c),d) = f(c,d) forall c € C and
deD.

The last item in the theorem above yields the universal property of
[D — E] as the exponential EP in DCPO. Once again, as is familiar
from category theory we can functorize this construction using the
universal property.

Definition 2.3.14. Let [— — —] : DCPO’ x DCPO — DCPO be the
functor which sends pairs of DCPOs (D, E) to [D — E], and pairs of
maps (f : D' — D, g : E — E') to the map

[f = §] = curry(goevip g oidp g % f): [D— E] = [D" — E']

Explicitly, it is given by
h—gohof

Recall that the key point of moving to DCPOs was our ability to
find least fixpoints of arbitrary continuous endofunctions f : D — D.
The method of finding the least fixed point by considering chains of
f"(L) is considered to be a computation of some sort. We now make
this precise by showing that the mapping fix :[D — D] — D taking

endofunctions to their least fixed points is continuous!?.

Theorem 2.3.15. The function fix :[D — D] — D defined by

fe @)

nelN

is continous.

Finally, we have also a strict version of this construction. Recall
that we said in most programming languages, a function call evalu-
ates its arguments before evaluating the function. Therefore, it does
not terminate unless the arguments terminate, i.e. f(_L) =_1. We call
such a function strict, and consider the space of strict functions.

Definition 2.3.16. Let D and E be DCPOs. The strict function space
[D —, E]istheset {f: D — E | f continuous and strict} equipped
with the pointwise ordering.

2.4 Scott Domains

In our discussion of the function space of the previous section, there
is an ominous omission of algebraicity. That is, we were missing the
following theorem:

ev /_y
D> E)xD — 2

E

[f—glxidp E
TeVFDaE]
D—E|xD —————[D—E]xD
[
idx f

12 Recall our slogan: every computable
function is continuous. We do not nec-
essarily mean the inverse: "continuous
functions are computable". However,
using only the tools of domain theory
we introduced so far, the continuous
functions are our best approximation of
which functions are computable.

algebraic.

Indeed, this is not true, but on somewhat of a technicality. The
following explanation is due to [AJ95]. First of all, let us consider
what the compact elements in [D — E| should be. At the very least
they should include the following elements.

Definition 2.4.1. Let D and E be DCPOs withd € D and e € E. We
define the pair function (d;e) : D — E as

(dse) (x) = {e ifx3d

1g otherwise

Note that this function is not necessarily continuous for arbitrary
d and e. However, it is continuous if d is compact, and is moreover a
compact element of [D — E] if e is compact.

Lemma 2.4.2. Let D and E be DCPOs with d € KD and e € KE. Then
(d;e) € K[D — EJ.

Proof. First to see that (d;e) is continuous, consider a directed set
SCD. If S 2 dthenforalls € S,s 2 dso (d;e)(]S) =L
and | Jses (d;e) () = lses L=L.If | |S O d then (d;e) (L|S) = eand
by compactness of d there is s € S s.t. d T s. Therefore, (d;e) (s) = e
soLles (di¢) (s) = LI{ L} =e.

To see that (d;e) is compact, consider a directed subset S C [D —
E], such that (d;e) C ||S. Since least upper bounds in [D — E]| are
defined pointwise, we have that (d;e) (d) = e C | |{g(d) | g € S}. By
the compactness of e, there is some g such that e T g(d). Now, we
can show that this extends to (d;e) C g as follows. Take an arbitrary
x € D.Ifx Jd, then (d;e) (x) = e C g(d) C g(x). Otherwiseif x 2 d,
then (d;e) (x) =LLC g(x). O

Lemma 2.4.3. Let D and E be DCPOs withd € KD — {_L} and e € KE.
Then (d;e) € K[D —, E].

Proof. The compact elements in [D — | E]| are exactly those that are
also compact in [D — EJ, so this follows immediately from the previ-
ous lemma. 0

Now, we can show that any continuous function f : D — E be-
tween algebraic DCPOs is the least upper bound of a bunch of com-
pact pair functions. The role of the pair functions here is similar to
how a set function is set-theoretically built up by a union of its input-
output pairs.

Proposition 2.4.4. Let D and E be algebraic DCPOs and f : D — E be
a continuous function. Then f is the least upper bound of pair functions in
the form (d; e) with d, e compact.

If moreover f is strict, we can ensure d #_L in all the compact pair func-
tions.

DOMAIN THEORY 23

24 DUALITY IN DOMAIN THEORY

Proof. We show that for each x € D and e € | gf(x) there is a pair
function mapping x to e that is below f. Indeed, since x = || |kx,
by continuity of f we have that f(x) = [Jsc . f(d). Therefore, by
compactness of e there is some d € | xx such thate C f(d). With this,
the pair function we are looking for can be given as (d; ¢). By the al-
gebraicity of E, each f(x) is equal to ||, ;, ¢(x) (d;€) (x), and since joins
are defined pointwise this suffices to show that we can approximate
f(x) by a set of pair functions.

If f is strict, but is above some (d; e) with d #_L then this almost im-
mediately leads to a contradiction since it would mean f(d) Je #.1,
unless e is also L. If eis also L, then (d;e) =_L so can be safely omit-
ted. O

However, the set of compact approximations of f is in general NOT
directed, and this seems to be a fundamental limitation of our defini-
tion of algebraic DCPO. Even trying to find a compact upper bound
of two pair functions is difficult, as we will now demonstrate.

Suppose (dq;e1) and (dy;es) are compact pair functions as defined
above, approximating a continuous function f : D — E. We want
to find a compact upper bound g of the two pair functions, such that
g C f still. An obvious candidate then is to define

1 ifxZAdiandx 2 d;
epr ifxJddyandx A dp
ep ifx Adyandx Jdp
??? ifxJddyandx Jdp

g(x) =

but then it is not clear how to define the case when x 2 d; and x
dp (i.e. when x € A in the figure to the right). It has to be an element
above both e; and ey, but it has to still approximate f(x). Moreover,
the requirement that ¢ be compact means that this element itself has
to be compact. An element that satisfies all of the above is e7 Ll e, but
of course this is not a directed join and so may not necessarily exist.
However, its not such a conceptual difficulty to accept that two ele-
ments e; and e, with an upper bound (i.e. the information they carry
are "consistent” with each other) should have a least upper bound (car-
rying just the combination of the information in e; and e;)'3. There-
fore, we require our domains to satisfy this additional requirement.

Definition 2.4.5. 1. A Scott domain or bounded-complete (bc) domain is
an algebraic DCPO E such that for any two elements ej,e; € E
bounded above, the least upper bound e; Ll ¢, exists.

2. Let Scott denote the full subcategory of DCPO containing the
Scott domains.

Theorem 2.4.6. 1. If D is an algebraic DCPO and E is a Scott domain
then [D — E| and [D — | E] are Scott domains.

2. Scott is a cartesian closed category.

Proof. 2. follows immediately from 1, so we just prove 1.

da
dq

D :
Image taken from [A]95]

B This is not so much a justification as it
is a "why not?"

(Bounded-completeness) Let f,g¢ : D — E be continuous maps
bounded above by h : D — E. Then we have that (f L g)(x) =
f(x) U g(x) which exists since f(x), g(x) are bounded above by h(x).
Additionally, note that f LI g is strict if f, g are strict.

(Algebraicity) Let g1, g» be compact approximations of a continous
map f : D — E. We find a compact upper bound g of g1 and g that
still approximates f, by defining ¢ = g7 U g». This shows | kf is
directed. To see that f = || | kf, recall that in Proposition 2.4.4 we
already showed f to be the least upper bound of the compact pair
functions approximating f, which are a subset of | xf. Again, we
remark that the argument carries through if f is strict, since then g;
and g are strict so g is also strict. O

Finally, we can characterize the compact elements of the function
space as those composed of a finite consistent set of compact pair
functions, provided we are in the category of Scott domains.

Proposition 2.4.7. Let D and E be Scott domains. Then
K[D — E] = {| | (d;;e;) | I finite,Vi € 1.(d; € KD and ¢; € KE),
i€l

{(d;;e;) }icy is bounded above}

and

K[D —, E] ={| | (di;e;) | I finite,Vi € I.(d; € KD — {L} and ¢; € KE),

icl

{{d;; e;) }ic1 is bounded above}

Proof. (For [D — E]) The right-to-left inclusion is clear, since any fi-
nite join of compact elements is still compact. For the left-to-right
inclusion, take an arbitrary f € K[D — E|. By Proposition 2.4.4
we can express f as a join of compact pair functions. Since we are
now working with Scott domains, this join can be made directed by
bounded-completeness, so the compactness of f implies f is a finite
join of compact pair functions. Moreover, these compact pair func-
tions are obviously bounded above by f.

(For [D — EJ) This follows immediately on account that these are
exactly the strict functions that are also compact in [D — E|. O

2.5 Denotational Semantics of Imp

With the domain theory we have developed so far, we are now in
the position to define the semantics of Imp, the basic imperative lan-
guage introduced in section 1.1. We define Xypyp, or just X for short
in this section, to be the domain [N, — | Z]. Note that this iso-
morphic to N — Z. Here, we are making the choice to use natural
numbers to represent variable names. We will denote a variable as n,
and an integer!# as k.

[-1(-): (AExp) = [Z — Z,]

DOMAIN THEORY 25

4 actual integers, not arithmetic expres-
sions.

26 DUALITY IN DOMAIN THEORY

keZ], =k

[n € NJ, = s(n)
[A1 - Aoy = [Ad]s [-] [A2]s
[A1 + Ar] = [Ad]s [+] [Az]s
[A1 x Az]s = [Ad]s [+] [Az2]s

[tt], = tt
[tfls = ff
[B1 and By[; = [Bi]; [and] [B2];
[B1 or B;]s = [Bi] [or] [B2];
[not B], = [not] [B],
[A1 = As]s = ([A1]s [=] [A2]s)
[A1 <= Ap]s = ([A1]s [<=] [A2],)

where the operations are defined as one would expect on non-_L
elements, but as soon as any argument is L it also returns L. The
rationale here is that we want Imp to be a strict language, so as long
as an argument doesn’t terminate, the operation also shouldn’t. For
example, [and] is defined as:

1 Jand] b =1
bland] L =1
fflend] ff = ff
ffland]tt = ff

ttland] ff = ff
tt [and] tt = tt

For the commands, there is nothing surprising, except for the fact
that we now have to account for the proliferation of | elements every-
where, just as for the arithmetic and boolean expressions. Once again,
we interpret the language strictly, so for anything involving boolean
or arithmetic evaluation we output L as long as the corresponding
boolean or arithmetic expression is L.

[-] : (Command) — [— X]

[skip] = idx,
[C1:C] =[G o [C4]
1y if [A], =L,

[[def n o= A]] (S) = s[n — [[A]]s] otherwise

L if [B], =La,
[if B then C; else Co] (s) = § Cy(s) if [B], =t
Ca(s) if [B]; = ff
[while B do C] = | | F5c(L)

new

where s[n := k| € ¥ denotes the state

k ifx=mn
X —r
s(x) ifx#n

and Fg ¢ : [— X] — [X — X is the continuous function defined by

I if [B], =1,,
Fgc(f) =s—= § folCl(s) if [B], = tt
s if [B], = ff

2.6 Solving Domain Equations

Our treatment of domains so far has allowed us to model Imp. How-
ever, we still have not developed a way of solving domain equations
in order to model the definition and reuse procedures. As suggested
before, the equations can be computed in the same way that we com-
puted the solution to an endofunction. To do this, we have to con-
sider our categories of domains as a "big!® DCPO"®, consider what
it means for an endofunctor to be "continuous”, and then prove a fix-
point theorem for such continuous endofunctors. The developments
in this section will follow that of [P1o83, Chapter 4 & 5].

As a first attempt, we can simply consider the usual category DCPO
itself. However, there are some issues with this. The first issue is
pragmatic. Recall that in the introduction we sought to find the least
fixedpoint of a functor like so:

F(D) := ((Var) — Z) x ({ProcName) — (D — D))

To boil it down and focus on the problem, let us try to find a fix-
point for
F(D):=[D — D]

We would like to think of F as an endofunctor F : DCPO — DCPO,
but this is not possible since the functor [~ — —] is contravariant on
one argument and covariant in the other.

The second issue is conceptual. Simply considering the existence
of any map to consist an information ordering is very weak. For ex-
ample, every DCPO has a map to the unique one-element DCPO @ |,

DOMAIN THEORY 27

5in the sense that the DCPO will not
have an underlying set, but rather an
underlying class.

16 Actually, since we are only concerned
with solving fixpoints here, we can con-
sider the category of domains as an w-
CPO instead, ie. posets with upper
bounds of any w-chains.

28 DUALITY IN DOMAIN THEORY

but we certainly should not consider them as containing less infor-
mation than @, . Instead, let us consider from first principles what it
means for one DCPO to approximate another.

Suppose we have DCPOs D and E that models a particular space
of programs, in such a way that the modelling is not superfluous, i.e.
each element of D models some program p, and similarly for E. Then
we would consider E to be better at modelling this space than D if for
every e € E modelling p, the corresponding d € D that also models
p satisfies d T e. Of course, such a comparison is ill-defined because
d and e live in different DCPOs. Therefore, we have to consider a
comparisonmap i : D — E thatembeds D into E. Moreover, for every
e € E modelling p, we should also be able to find the d modelling p
such that i(d) C e. Therefore, we ask for amap j : E — D backwards
as well, such that ji(d) = d.

Definition 2.6.1. 1. Let D and E be DCPOs. An embedding-projection
pair is a pair of continuous maps (i : D — E,j : E — D) i, satisfying

ji = idp and ij C idg.

2. We say that i is an embedding if there is a corresponding j such that
(i,7) is an embedding-projection pair. In similar fashion we say
that j is a projection if there is a corresponding i making (i,) into
an embedding-projection pair. Notationally, we willusei : D < E
to denote that i is an embedding from D into E, and j : E > D to
denote that j is a projection.

3. Let DCPOF denote the category whose objects are DCPOs, but the

maps are embedding-projection pairs'”.

The following lemma shows that in fact DCPOF can equivalently
be considered as the subcategory consisting of all DCPOs except the
maps are just the embeddings, and that DCPO®" can be considered
the category where the maps are projections.

Lemma 2.6.2. Given an embedding i : D < E, there is a unique continuous
map iR : E — D such that (i,iR) forms an embedding-projection pair.
Similarly, any projection j : E 1> D is associated with a unique embedding
i
Proof. Let j and j' be two maps that form an embedding projection
with i. We have ij C idg which implies j = j'ij C j'. Symmetrically
we have that j/ C j, so j = j/. The proof for unique embedding is
analogous by considering i = iji’ C 7. O

This also solves our pragmatic problem on the matter of mixed
variance, since to turn a contravariant functor on DCPO into a co-
variant one in DCPOY, we just make it act on the projection instead!

Definition 2.6.3. 1. A functor F : DCPO’’" x DCPO" — DCPO is
locally monotonic if for any family of morphisms f; C f/ : D} — D;
withi < mand g; C g/ : E; — E! withi < n we have that

F(fo- - fu-1,80---8n-1) CF(fo-- fr1,80- - &n-1)

17 the direction being the direction of the
embedding, not the projection

Lemma 2.6.4. Let F : DCPO?" x DCPO" — DCPO be a locally
monotonic functor. Then there is a monotone functor FE : DCPOF" x
DCPO!" — DCPO® defined on objects in the same way as F, and on
morphisms by

FE(io, .. im0, s jn1) = FG&, .., i% 1 jo, oo jnn)

Proof. The functoriality of FF follows from functoriality of F, and the
fact that (ii’)R = i"RiR and idR = id. Moreover, we need to make sure
that FE(ig, ..., im_1,jo,---,jn_1) is also an embedding. We claim that
the projection is F(ip, ..., im,l,j(lf,. .. ']';If—l)'

F(iR,j) o F(i,jR) = F(i 0 iR, j o jR) By functoriality
C F(id,id) By local mononicity
=id By functoriality

F(i,jR) o F(iR,j) = F(iR 0/i, jR o j) By functoriality
= F(id, id)
=id By functoriality
O

Example 2.6.5. From the functor [— — —| we obtain a functor [— —
—]E . DCPO* x DCPOE — DCPOF defined on morphisms by

[(i:D<D)— (j:E<ENEMh:D<E)=[i® —j](h) =johoik.

Next, we have to consider what a limit of a sequence in DCPOF is.
The least upper bound in a poset is categorically a colimit. Following
this, we define the limit as the colimit of the sequence. Let us see what
this means explicitly.

Lemma 2.6.6. Let [: w — DCPOF be a diagram. Then the colimiting

cocone of the induced diagram I* : w 1, DCPOE — DCPO always exists,
and is also a colimiting cocone of I.

Proof. Let I, denote the n-th DCPO in the diagram, and for n < m let
Lym : In < I, denote the embedding from the n-th DCPO to the m-th.

We define the cocone vertex of I* as the sub-DCPO D of [, In
containing

{d S 1_[I, | Viewd; = IiI,{iJrl(diﬂLl)}

new

The cocone maps are defined by
On:lp — D

dn = (15,71 (dn); Iﬁn (dn)/ cee 1dn/ In,n—i—l (dn)r In,n+2(dn)1 .)

It is routine to verify that this is an embedding with projection d
dy, and commutes with the I, ;, maps making it a cocone.

DOMAIN THEORY 29

30 DUALITY IN DOMAIN THEORY

To see that this is indeed the colimit of I*, consider an arbitrary
cocone (E, (ky)new)- Then we can define amap f : D — E given by

d— || xn(dn)

new

Indeed, this definition is forced since we can show thatd = | |,,c., pn (dn).

Since f has to preserve directed joins and behave well with respect to

k, we must have that f(d) = | |,c f(0n(dn)) = Unew €n(dn)-
Moreover, it is clear that this cocone is also the colimit of I, since

the cocone maps are embeddings and therefore exist inside the sub-

category DCPOF where it inherits the universal property. O

It is then clear what a continuous endofunctor is in this context.

Definition 2.6.7. A functor F : (DCPOE)" — DCPOF is continuous if
F preserves w-colimits.

Analogous to the definition of locally monotone, we can formu-
late a definition of "locally continuous" for functors on DCPO that
ensures they can be lifted to a continuous functor on DCPOE,

Definition 2.6.8. A functor F : (DCPO°”)" x DCPO" — DCPO is
locally continuous if given families of morphisms
e (f}): D! — D; withk € wand i < m such that ff C fik+l

. (g;‘) tEj — E; with k € w and j < n such thatg;‘ C g}‘”

k k k k
wehavethat F(f,..., fK | ¢k ... g5 VT F(fET, L, AL bt gk)

m—1/
and

F(U S Ut L 860 U fio) = L FOR - fea 86 8)

kew kew kew kew kew
Lemma 2.6.9. If F : (DCPO’")" x DCPO" — DCPO is a locally con-
tinuous functor then FE : (DCPOE)"+" — DCPO is a continuous func-
tor.

Proof. Notice that local continuity of f implies local monotonicity,
so FE is a well-defined functor. Consider an w-diagram D : w —
(DCPOE)"*", and the standard colimit D’ of this diagram, as de-
fined in Lemma 2.6.6. This colimit has cocone maps py : D(k) — D'.
We need to show the canonical embedding / from the standard
colimit E/ of FF o D to FE(D’) is an isomorphism. Unfolding the defi-
nition of E’ and h, for every d € F(D') we need to find a unique e € E’
such that
d=h(e) := | | Flpo)(er)
kew
We take ¢, := F(pi)R(d), and have that
h(e) = || Flox)F(pe)"(d)

kew
= || Flowoi)(d)
kew
=F(| | pxpf) () By local continuity
kew
=F(id)(d) = d since | | prpp = id

kew

O

Example 2.6.10. [— — —] is locally continuous so [— — —| is a continu-
ous functor.

Theorem 2.6.11. Let F : DCPOE — DCPOEL be a continuous functor.
Then there is a DCPO D such that D = F(D).

Proof. D can be obtained as the colimit of the w-diagram

(*)

! F(!
®L<1F(®L) < FZ(QL)

O

In fact, we can generalize this theorem further to the solution of a
system of simultaneous equations:

Theorem 2.6.12. Let Fi, : (DCPOE)" — DCPOE be an n-family of
continuous functors. Then there is an n-family of DCPOs such that

Proof. (sketch) We can consider the F; as a single functor F : (DCPOE " —

(DCPOE)" and compute the least fixed point of F. This requires ap-
propriate generalizations of the previous concepts, but there is noth-
ing new conceptually. O

2.7 Denotational Semantics of ImpProc

With all the constructions we have defined so far, we can finally give
a proper denotational semantics of the ImpProc language we defined
in the introduction. In fact we can construct the whole semantics from
basic finite domains @, and 1, and using domain equations over
[- — —] and — x —. This will come in handy in the final chapter
when we construct the logic for reasoning about ImpProc, since we
will describe the logic of [D — E| inductively in terms of the logic for
D and E, and so on.

To begin with, we can represent the set of variables and and pro-
cedure names as the flat domain IN | . This can be constructed as the
fixed point of the functor

V(X):=1, ®X

To illustrate why this is, we see that V¥(|) is the flat domain with k
elements:

0, T) 0,T) (1,(0,T)) 0,T)

|

L 4

V(D) V(D))

In the limit, we obtain the flat domain IN | . We can also obtain Z |
asIN| &IN;.

DOMAIN THEORY 31

V3(@))

32 DUALITY IN DOMAIN THEORY

Next, we have to construct the state space Zympproc- For brevity,
we refer to Limpproc as . in this section. First, we separate ¥ into the
part that keeps track of variables (VEnv := Xypp) and the part that
keeps track of procedures (PEnv).

Y. = VEnv x PEnv

The variable structure does not need a domain equation to define,
since it is just Xymp:

VEnv := [NL — ZL}
To define X, we solve for the single domain equation
2. = VEnv X [NL — [Z—)ZH

and define
Proc:= [— %]

PEnv:= [N — Proc]

Therefore, we have an isomorphism
& : % = VEnv x PEnv

With this, we can finally define the semantics.

[0 : (AExp) = [£E = Z,]

[keZz], =k

[n € NJ; = mveny (a(s))(n)
[A1 - As]s = [Aals [-][A2s
[A1 + Aj]s = [A], [+] [A2],
[A1 = As]s = [Aa]s [] [A2ls

[0 : (BExp) — [— 2]

[tt], = t
[ff]s = ff
[B1 and B]; = [Bi], [and] [Ba],
[B1 or B[, = [B1]; [or] [B2];
[not B], = [not] [B],
[A1 = Aj]s = ([A1]s [=] [A2]s)
[A1 <= Ar]s = ([A1], [<=] [A2],)

[-] : (Command) — [— X]

[skip] = idx
[C1:Ca] = [C2] o [C4]
[def n := A](s) = {LE if [As =1n,
s[n:=[A],] otherwise
L i [Bl,=La,
[if B then C; else Cp] (s) = Ci(s) if [B], = tt
Cals) if [B], = ff
[while B do C] = | | F5c(L)

new

[def n := C](s) =s[n :=[C]]
[run n] = 7 (7tpEny(a(s))) (1)

where s[n := k] € X denotes the state

k ifx=mn
(x — {nVEnv(tx(S))(x) ifx £ n,annv(ﬂc(s)))

and similarly s[n := [C]] denotes the state

. [C] ifx=mn
o (nVEnv(“(s))’x = {annv([x(s))(x) if x # 1’1)

Moreover, Fgc : [— X] — [X — X] is the continuous function
defined by

1 if [B], =1,
Fge(f) =s—= ¢ folC](s) if [B], = tt
s if [B]; = ff

Notice the difference between the semantics of defining an integer
variable and defining a process variable. The former models how we
eagerly compute the assigned integer upon assignment, while the lat-
ter models how we lazily only compute the assigned command when
we run it.

DOMAIN THEORY 33

3
Duality Theory

In this chapter, we introduce Stone duality, which provides a cor-
respondence between logics (represented as categories of algebraic
structures) on one hand, and their spaces of models on the other. Nor-
mally, you would have a good idea of what your logic is, and there-
fore apply Stone duality to find a space of models. With domains, we
work in reverse: we have a good intuitive understanding of domains
as a space, and so we apply Stone duality to find logics whose models
are elements of the domain. In other words, we use Stone duality to
find a logic for reasoning about programs.

In section 3.1, we begin by introducing the intuitive understanding
of domains as topological spaces. We develop some basic aspects of
the spatial structure, which will be useful later. Then, section 3.2 and
section 3.3 introduces the basic form of Stone duality.

The remaining sections then sharpen this duality. section 3.5 makes
the observation that while DCPOs in general do not fit under the
framework of Stone duality, algebraic DCPOs do fit. We can therefore
sharpen the duality to discover the algebras/logic corresponding to
algebraic DCPOs.

In section 3.6, we impose a restriction on the logic - it has to be rep-
resentable using only finite logical operators!. We sharpen the Stone
duality to discover what conditions this corresponds to on the spa-
tial side, and observe that both Scott domains and bifinite domains fit
these conditions, so it is still applicable.

In the next chapter, we put together these dualities to construct a
logic for reasoning about programs.

3.1 Topologizing Domains

The order relation in a DCPO is understood as being an information
ordering: x T y means that any property true of x is also true of
y. Now, mathematically we can identify a property with the set of
elements satisfying that property?. But that means a property is not
just any set: by our interpretation of T, a proposition has to be an
upwards-closed set with respect to this ordering.

Moreover, for programs, we care only about the finitely observable
properties: if a computation | | A satisfies a finitely observable prop-
erty P, then it should be satisfied at some finite stage 2 € A of the

! as we will see, this is requirement cor-
responds to algebraicity as well, but this
time on the algebra side instead of the
spatial/DCPO side

2 That is, we take an extensional view of
properties.

computation. Mathematically, we say such a property is inaccessible
by directed joins.

The finitely observable properties should be closed under arbitrary
disjunction: if we can finitely observe one of them then we can finitely
observe all of them. Moreover, they should be closed under finite
conjunction: we can finitely observe finitely many such properties,
but not if there are infinitely many. Finally, the property that is always
true and never true should be trivially observable. We capture this
idea with the notion of a topology.

Definition 3.1.1. A topological space is a set X equipped with a set of
subsets (21X, called the topology of X. The elements of ()X are called
the open subsets of the space. A subset S C X is closed iff X — S is
open. S is clopen iff it is both closed and open.

A function f : X — Y between two topological spaces are continu-
ous if for any open set U C Y, f~1[U] is also an open set®.

Let Top denote the category of topological spaces and continuous
functions.

The collection of upwards-closed sets in a DCPO that are inaccessi-
ble by directed joins are closed under finite intersection and arbitrary
union, so they form a topology called the Scott topology.

Definition 3.1.2. Let (D, C) be a DCPO. Then a set U is Scott-open if
it satisfies the following two properties:

1. upwards closed: if x C y and x € U, theny € U.

2. inaccessible by directed joins: for all directed sets A, if | |A € U
then A N U is non-empty.

The Scott-open sets form the Scott topology %D, although we will also
often refer to this topology by (0D when there is no ambiguity.

The condition of inacessibility by directed joins presents in a sim-
pler way in terms of Scott-closed sets.

Proposition 3.1.3. Given a DCPO D, a subset S C D is closed iff it is
1. downwards closed: if x T yand y € S, then x € S.
2. closed under directed joins: for all directed sets A C S, | |A € S.

As a first exercise, we observe that the intuitive meaning of T
holds: the specialization ordering induced by 2D corresponds to the
order on D.

Definition 3.1.4. Given a topological space X, define the specialization
orderingtobe x <x y <= (VU openx e U = y e U)

Proposition 3.1.5. Let (D,C) bea DCPO. Then x <yp y <= xLCy.

Proof. (<=) Obvious, since every Scott-open set is upwards closed
w.rt. C.

(=) Suppose x <yp y. Consider the set of elements that are
not* below y:

DUALITY THEORY 35

3 The intuition here being that if I ob-
serve a property U of y € Y, I want
to observe a corresponding property on
the elements of f~1(y).

*using the set of elements not below
some element y is generally a good tac-
tic when proving things about the Scott
topology, since the usual candidate 1y
is not necessarily Scott-open.

36 DUALITY IN DOMAIN THEORY

U,={zeD|zZy}.

Observe that it is Scott-open and thaty ¢ Uy, so by applying x <sp v,
we have also that x ¢ Uy. Therefore, x C y. O

The choice of the Scott topology is also justified in terms of mor-
phisms, for the topologically continuous functions between Scott topolo-
gies are exactly those that preserve directed joins.

Proposition 3.1.6. Let f : D — E be a function between DCPOs D, E.
Then f is continuous in the domain-theoretic sense (Definition 2.1.7) iff it is
a topologically continuous function between the corresponding Scott topolo-
gies.

Proof. (==) Let S be a closed set in E. Then f~![S] is downwards
closed in D, for whenever x C y € f~![S], then f(x) C f(y) € S, so
f(x) € S which means x € f~![S]. By a similar reasoning using f’s
preservation of joins, we can show S is closed under directed joins.

(<=) For monotonicity, suppose x T y in D. We need to show
f(x) C f(y) in E, so consider the closed set | f(y) in E. Then by
continuity of f, f~1[| f(y)] is also closed and therefore downward
closed. Since y € f~'[| f(y)], sois x, and so f(x) € | f(y) which
means f(x) C £(y).

For preservation of joins, let A C D be a directed set. Clearly,
since f is monotone and | |A C a foralla € A, we have f([JA) C
f(a) for all a € A. Hence, by the universal property of the join we
have || f[A] C f(LUA). For the other direction, Consider the closed
set S = | || f[A] in E, whose inverse image will also be closed by
continuity of f. Then f[A] is a subset of S, so A is a subset of the
inverse image. Since the inverse image is closed, it is closed under
directed joins, so | | A is in the inverse image, meaning f(| |A) € S.

Hence, f(LJA) C | f[A]. O

For algebraic DCPOs, the Scott topology has an alternate defini-
tion, which even more closely resembles our intuition.

Proposition 3.1.7. Let (D,C) be an algebraic DCPO. Then U is Scott-
open iff it is upwards-closed and whenever x € U, there is a compact element
x' € | kx such that x' € U.

Proof. Clearly, if U is inaccesible by directed joins this will imply the
above property for an algebraic DCPO, since x = ||(| xx). On the
other hand, if U has the above property, and x = | |S € U for some
directed set S. Then, there is some x’ € | gxx such that x’ € U. Since
x" € x = ||S, by compactness, there is y € S such that x’ C y. Then
by upwards closure of U, we have y € U. O

3.2 Topological Spaces & Locales

The core idea of Stone duality is that there is a correspondence be-
tween certain spaces and certain logical algebraic structures. Indeed,
from a topological space there is one such algebraic structure we can

extract, which consist of the open sets of the space. The operations
of this structure is that of infinite joins and finite meets, and we ax-
iomatise this structure by the notion of frame. While we are defining
frames, we take a moment to also introduce related structures.

Definition 3.2.1. A poset (P, <) is a lattice iff any two elements has
both a meet and a join. A function between two lattices is a lattice
homomorphism iff it preserves all finite meets and joins.

We can also define a lattice (L, A, V) by the following axioms.

(Commutativity) avVb=bVa aNb=bAa
(Associativity) aV(bve)=(@vb)vec aN(bAc)=(aNb)Ac
(Idempotence) ava=a aNa=a

(Absorption) a=aV(aAb) a=aA(aVvb)

A lattice (L, A, V) is distributive if the following additional axioms
are satisfied:

(L, A\, V) is bounded iff there are elements 0,1 € L such that0 < a <
1 for all @ € L. These can be thought of respectively as the join and
meet of the empty set.

Definition 3.2.2. Let P be a poset. Fora € Pand S € P, we write

t1S={xeP|IyeSx>y}

Ta=1{a}
1S={xeP|IyecSx>y}
ta=|{a}

Definition 3.2.3. A bounded lattice is a frame iff additionally every
subset has a join and binary meets distribute over arbitrary joins:

xA(VY) =\{xrylyeY}

A function between two frames is a frame homomorphism iff it pre-
serves arbitrary joins and finite meets. We denote the category of
frames and frame homomorphisms as Frm. A subframe is a subset Y
of a frame X s.t. the inclusion map Y — X is a frame homomorphism.
More explicitly, Y is a subframe of X if it satisfies the conditions:

e fSCYthenVYS €Y.
e If S C Y finitethen AS € Y.

We may view frames as an abstraction of topological spaces, con-
sidering only the order-structure of the observations/properties (opens)
and forgetting the things (points) being observed. There is a slight
subtlety involved in this view though. The natural notion of mor-
phism between topological spaces is a continuous map f : (X, QX) —

DUALITY THEORY

37

38 DUALITY IN DOMAIN THEORY

(Y,QY), which maps an open set U in Y to an open set f~1[U] in X.
In view of this, it is the inverse map f~! : QY — QX that acts as a
frame homomorphism® between QX and QY. Hence, when we con-
sider frames as abstractions of spaces, we call them locales®, and a
frame homomorphism A — B is instead considered as a "continuous
map" B — A between locales.

Definition 3.2.4. The category of locales Loc is the opposite category
of Frm. Thus a locale morphism A — B is in fact a frame homomor-
phism A — B.

With this definition, we can properly express this view of locales
as "pointless" spaces by the localification functor Q(—) : (X, QX) —
()X forgetting the points of a topological space X and giving back just
the frame.

Definition 3.2.5. The functor Q)(—) : Top — Loc maps topological
spaces (X, QX) to its frame of opens 21X, and maps continuous func-
tion f : X — Y to its inverse image function f~![-] : QY — QX,
which is a locale morphism QX — QY.

For topological spaces, we started by specifying what the points
are, and essentially enforced the frame structure to be extensional”
over these sets of points. For locales, the frame structure comes first
and we do not know what points we were originally observing - is
there some way of "reconstructing” the points of the space? We can
make a best guess by saying that there is exactly one point corre-
sponding to each "complete" set F of observations®. Here, "complete"
means that it completely describes the space of observations on a sin-
gle point’.

What exactly does it mean for a set of properties to "completely"
describe a single point? Observe that the set must respect the frame
ordering: if a < b and the point observes a then it must also observe
b. Hence, the "complete" sets have to be upwards closed. Moreover,
if the point observes both a and b, then it must also observe a A b.
Finally, if the point observes \/;c; a; then this can only be because the
point observes some 4;.

Definition 3.2.6. Let A be a frame. A filter © C F C A is an upwards
closed set satisfying the following property: if a,b € F thena A b € F.
The filter F is proper if F C A0, and it is completely prime if, in
addition to being proper, it has the following property: \/;c;a; € F
implies a; € F for some a;.
The set of completely prime filters of A is denoted by pt(A), the set
of points of A.

A more succinct way of describing pt(A) is as the set of frame ho-
momorphisms A — 2. A completely prime filter F induces a homo-
morphism xr : A — 2, defined as the characteristic map of F. On the
other hand, the kernel x~1(1) of any frame homomorphism x : A — 2
is a completely prime filter.

®as opposed to the direct image map

f 'El?)l:élg‘xls_é %%‘c word for space, so
Y P
frames/locales are fancy spaces.

7 in the sense that each property is deter-
mined by the set of points they contain.

8after all, if there was no such point,
how did we make the observation in the
first place? So this is a kind of conserva-
tive estimate: we put in only the points
which have to exist.

? A non-example would be the set {1}
consisting of the empty observation,
which is observable on any point so it
does not adequately describe a single
point.

0 or equivalently if 0 & F.

" Note that this is a locale morphism
2 — A, and that Q1 = 2 where 1 refers
to the topological space with a single el-
ement. Points of a topological space X
correspond to maps 1 — X, so it makes
sense to do something similar with lo-
cales.

~

Proposition 3.2.7. Given any frame A, we have the isomorphism pt(A) =
A— 2

For any such x : A — 2, we can equivalently look at the comple-
ment of x~1(1), namely x~1(0). That is, we look at the set of proper-
ties that are not satisfied by the point. If 2 < b and the point does not
observe b then it also cannot observe a. If does not satisfy a A b, then
either it doesn’t satisfy a or it doesn’t satisfy b. Finally, if the point
does not satisfy any of a set of properties S, then it also cannot sat-
isfy \/ S. But note that if we take S = x~1(0), then the single element
\ x71(0) in fact encapsulates all the information about x~1(0).

Definition 3.2.8. Let A be a frame. Anideal © C I C A is a down-
wards closed set satisfying the following property: if a,b € I then
aVb € 1. Aprincipal ideal is one that is generated by some a € A as
la, and if the resulting ideal is also prime then we say a is prime.

So x71(0) is a prime ideal, and the above analysis shows that it
is principally generated by \/ x~1(0). We therefore have also a cor-
respondence between the prime elements of A and pt(A). We will
switch around between these three different perspectives on points
depending on the situation.

Having "reconstructed" the set of points, we now seek to re-associate
them to the properties and construct a topology. The natural thing
to do is to associate each observable property a € A with the set of
points observing a'2:

eqla) :={x ept(A)|acx}

Proposition 3.2.9. Let A bealocale. Then (pt(A), Qpt(A)) forms a topol-
ogy, where Qpt(A) is the image of € 5. Moreover, this mapping can be lifted
to a functor pt(—) : Loc — Top mapping each frame homomorphism
f:B— Ato f 1] : Qpt(A) — Qpt(B).

We may also start with a topological space X, forget its points leav-
ing us with only QX, and then reconstruct the points as pt(QX).
Analogous to ¢, we may now ask how to associate the original points
to the reconstructed points. The natural thing to do is to associate
each original point x € X with the point corresponding to the com-
pletely prime filter of properties observed by x:

nx(x):={a e QX |x €a}

Even though these spatialisation/localification operations are not
perfect (as we will soon see), they may be regarded as computing the
best space/locale approximating the given locale/space, i.e. spatiali-
sation and localification forms an adjunction.

Theorem 3.2.10 ([Joh82, subsection IL.1.4]). The functor pt(—) is right
adjoint to Q(—).

Proof. We directly exhibit the isomorphism

Homp (X, A) =2 Hompym (A, QOX) = HomTOP(X, pt(A)).

DUALITY THEORY 39

20ne can verify that this mapping
forms a frame homomorphism.

| — | and | —] aIe INverses.

LTA1 () = [£17 i ()]

40 DUALITY IN DOMAIN THEORY ={acAlxe[fl(a)}
={acAlxeflea@)}
={acAlacf(x)}
= f(x)

Given a continuous map f : X — pt(A), define its transpose [f] :

A — QX tobe [f](a) :== fllea(a)]. On the other hand, given a (k7 (@) = Lh] ()]

frame homomorphism f : A — QX, define its transpose |h| : X — —{xeX|ac |k ()}

pt(A) tobe 1] (x) := hil[ﬂX(xH' ={xeX|ach yx(x)]}

0 ={x e X|xeh(a)}
= h(a)
3.3 Sober Spaces & Spatial Locales

Going back and forth by spatialising and then localifying (and vice
versa), one does not always recover the same structure, i.e. these
operations do not preserve all information associated with the input
structure. The following example shows two topological spaces X for
which pt(QX) is not the homeomorphic to X.

Example 3.3.1. Consider the space X = {1,2,3} equipped with the topol-

ogy QX = {@,X}. Then n(1) = n(2) = y(3) = {X}, and in fact this

is the only point in pt(QX), so we have collapsed three points to the same

point because we did not have enough open sets to distinguish them.
On the other hand, consider the so-called Alexandroff topology on the set

of finite binary lists, which is a binary tree when understood as a partial

order. ~. N
The open sets of the Alexandroff topology are precisely the upward closed ~

sets, generated by a union of sets of the form 1 xs where xs is a finite

binary list. We have the completely join prime filter consisting of { 111, 1

[0], 11[0,0], 11[0,0,0]...}, but observe that this filter is not of the form

1(xs) for any xs, since we can always find an open set 1[0 : |xs|+

1 many times] which does not contain xs. Hence, we have generated a new

point, not corresponding to any original point in the topology.

The first example demonstrates how we start with three distinct
points, but they satisfy exactly the same properties, so the spatiali-
sation operation on ()X cannot distinguish the points. On the other
hand, the second example shows that not all "complete” sets of prop-
erties are embodied by a point, so the spatialisation operation ends
up hallucinating a new point entirely. If we restrict attention to those
spaces that do not hallucinate or confuse different points, then what
we get are sober topological spaces.

Definition 3.3.2. A topological space (X, QX) is sober if the unit map
nx : X — pt(QX) of the adjunction is a homeomorphism.

We can obtain a more useful description of this condition by con-
sidering the reconstructed points as prime elements of (2X. The unit
map 77x can be expressed instead as the following prime element:

nx(x) = U{a € QX |x ¢&a}
It's complementis N{b | X —b € QX & x € b}, which is the closure
of {x} in X.
More generally, the complement b of a prime element is a closed
subset of X that is irreducible in the sense that they cannot be expressed
as a union by U by of proper closed subsets of b.

Proposition 3.3.3. A space X is sober iff every irreducible closed subset is
expressible as the closure of {x} for some unique x € X.

Localification is also not perfect, since there may not be enough
points to distinguish two properties - it is possible in general that a #
b but ¢(a) = €(b). The following is an extreme example where we
start with a locale with no points, so the spatialising the locale and
the localifying it back yields the trivial locale.

Example 3.3.4. Complete Boolean algebras are locales since they have in-
finite meets and joins, and the infinitary de-Morgan laws hold. In a com-
plete Boolean algebra, the abstract points AKA prime elements correspond
to co-atoms. There exist (co-)atom-less complete boolean algebras B, so if we
spatialize B, then it has no elements. Therefore the corresponding localifica-
tion must be the one-element locale 1, and not B. The counit map is then the
unique map B — 1, which identifies any two opens in B.

As before, we can also restrict attention to those locales with suffi-
ciently many points.

Definition 3.3.5. A locale A is spatial if the counit map €4 : A —
Qpt(A) is a frame isomorphism.

Proposition 3.3.6. A locale A is spatial iff for any a,b € A, whenever
a £ b, then there exists x € pt(A)s.t.a € xbutb ¢ x.

3.4 Duality for Sober Spaces & Spatial Locales

We have previously identified the sober spaces which remain un-
changed under the localification-spatialization process. Similarly, we

DUALITY THEORY 41

identified the spatial locales which remain unchanged under the spatialization-

localification process. Given a sober space X, its localification is spa-
tial, and similarly a spatial locale A has a sober spatialization. This
means that the adjunction between spaces and locales restricts to a
correspondence between the sober spaces and the spatial locales.

Theorem 3.4.1 (Stone Duality). The adjunction of Theorem 3.2.10 re-
stricts to an equivalence of categories Sob ~ SLoc.

This means that whenever we have a category of spaces, and we
show each space in this category to be sober, then we can correspond-
ingly express that category as a category of spatial locales. We just
have to study how the defining conditions for the spaces correspond
to the locales. In the following sections, we will do this for the various
notions of domains considered as spaces.

3.5 Duality for Algebraic DCPOs

The first observation to make is that the Scott-open sets for an alge-
braic DCPO D are generated by the upsets 1 c of compact elements
¢ € KD. This observation captures the essence of algebraicity in a
topological manner.

This section a sharpening of the devel-
opments in [Vic89, Section 9.3]. We mo-
tivate a property called super-coherence
as proposed in [SVng], which is weaker
than spectral algebraicity and corre-
sponds exactly to the Scott topology on
algebraic DCPOs.

42 DUALITY IN DOMAIN THEORY

Definition 3.5.1. Let X be a topological space. A basis for X is a set
B C wX such that B is closed under finite intersection, and every
open set is equal to a union of some elements in B. A subbasis for X
is a set B such that the closure of B under intersections is a basis.

Proposition 3.5.2. Let (D, C) be an algebraic DCPO. Then the set of opens
1KD ={Tc|ce KD}
is a subbasis for ZD.

Proof. Let U be a Scott-open set. Then we have that U = J{ Tc|c €
U N KD}, since for any x € U, by the algebraicity of D, there is a
compact elementc C xin U,sox € ¢ C U. O

This characterisation allows us to prove that the Scott topology is
sober, placing algebraic DCPOs inside the Stone duality of the previ-
ous section.

Proposition 3.5.3. Let (D, C) be an algebraic DCPO. Then 2D is sober.

Proof. We show that the following unit map is a homeomorphism.

np : D — pt(£D)

d—{Ue€XD|deU}

(Injectivity) Let d,e € D, and suppose d # e. Then either d £ ¢
or e [Z d. By Proposition 3.1.5, the Scott topology induces T as its
specialisation ordering, so d [Z e is equivalent to saying that there
exists U € LD such thatd € Ubute ¢ U, and similarly fore Z d. In
either case, this shows that 17p(d) # np(e).

(Surjectivity) Let x € pt(XD). Intuitively, by Proposition 3.5.2, the
contents of x (treated as a completely prime filter) are entirely deter-
mined by what basic opens x contains. So the idea here is that the
set

Ky:={ceKD| fcex}

determines x, and since we are in an algebraic DCPO, a set of compact
points determines a unique point in D. Therefore, we claim that K is
directed and that 57p (LT Ky) = x.

To see that K is directed, take ¢,d € K. Then t¢, td € x,so by x
being a filter, (¢ N 1d) € x. By Proposition 3.5.2,

Tc N Td:U{Te|e€KD& TeC (ten td)}

Since x is completely prime, we must therefore have some ¢ € KD
such that e € xand Te C (Tc¢ N 1d), which equivalently means
e € Kyand e > ¢,d. This shows K, is directed.

Next, to see that {U € =D | |JT K, € U} = x we can reason in a

fairly formal fashion:

|_|TKx€u
= UTKXGU{ telec KD & e C U} by Proposition 3.5.2
e TecKD. teCcU& || K, ete
> JecKD. feCU&e<| | K,

<= decKDdceK,. TeCU&e<c
<= de,ceKD. teCU& TcCtTe& Tcex

< decKD. teCU& Tecx by x upwards closed
= Ucx by x completely prime

(Open) Let U be a Scott-open set. Then by definition of the topol-
ogy on pt(XD), the set exp(U) := {x € pt(ED) | U € x} is open. We
can then show that #p[U] = exp(U), and is therefore also open. [

So algebraic DCPOs with their Scott topologies are sober, but can
we identify the sober spaces which are the Scott topology on some
algebraic DCPO? Clearly, this must have something to do with the
topological characterisation of algebraicity we gave above. We can
take it further by understanding 1 KD in purely topological terms.
c is compact iff 1 c is Scott open. Given an open set of the form
a = T x in a sober space, we have that the completely prime filter
{b | x € b} corresponding to x is equal to Tasincea C biff tx Cb
iff x € b. We may therefore equivalently characterise such open sets a
as those for which 74 is a completely prime filter, i.e. 1a is a point.
Generalizing, we call such opens a completely prime. As we will see,
every completely prime open 4 is of the form 7 x, except for the trivial
case when a = 0.

Definition 3.5.4. In a locale A, an open a € A is completely prime'3 if,
forany S C A, a < VS implies a < s for some s € S. We denote
the set of completely prime elements of A as CP(A), and if X is a
topological space we take CP(X) as shorthand for CP(Q)X).

With this characterisation, we can say that the Scott topology of an
algebraic DCPO has a basis of completely prime opens, which char-
acterizes algebraicity in purely topological terms.

Definition 3.5.5. A topological space X is super-coherent'# if it is sober
and has a basis of completely prime opens. Let SCohSp denote the
full subcategory of Sob containing the super-coherent spaces.

Similarly, a locale A is super-coherent if it is spatial and has a ba-
sis of completely prime opens, with SCohLoc the corresponding full
subcategory of SLoc.

This topological characterisation of algebraicity in a DCPO sug-
gests that we can restrict the duality between sober spaces and spatial
locales to algebraic DCPOs, with super-coherent topologies arising on
the spatial /localic side.

DUALITY THEORY 43

3Because 1 a4 becomes a completely
prime filter in this case.

4 Super-coherent is actually a terrible
name because this condition does not
imply X is coherent.

44 DUALITY IN DOMAIN THEORY

Theorem 3.5.6. Let X be a super-coherent space. Then

1. the compact points of X are in 1-to-1 order-reversing correspondence with
the (non-trivial) completely prime opens;

2. the induced specialisation ordering'® (X, <x) is an algebraic DCPO;
and

3. QX is the Scott topology generated by this ordering.

Proof. 1. Any point x € X can instead be considered as an abstract
point x € pt(QX) since X is sober. We now show x can be ex-
pressed as a directed join

x=|J{1alaeCP(X)&aecx}

Note that by our previous analysis this morally says x is a directed
join of the compact elements below it - we will soon prove that this
is indeed the case formally.

It suffices to show:

bex < JneCP(X)acx&a<b

Since X has a basis of completely prime opens, we know that b is
the join of the set | cpb of CP-opens below it. Hence, by x being
completely prime, we have

bex < (\/ lcpb) €x
<= da € |cpbacx
<— JeCP(X)acx&a<b

To see that the set { 1a | a € CP(X) & a € x} is directed, take
a,b € x such thata,b € CP(X). Then we have the opena A b € x
since x is a filter, and moreover a Ab = \/ | cp(a A D). Hence,
we have \/ | cp(aAD) € x, so by x being completely prime we
have some completely prime ¢ € x such that ¢ < a A b. Therefore,
tce{talaec CP(X)&aec x},and Ta C T cand similarly
b C 7T c so the set is indeed directed.

Now, we prove that the map
CP(X) — {0} - KX
a— Ta

is an order-reversing isomorphism. Clearly, a < biff 1a D 19,
which also gives us injectivity'®. For surjectivity, let x € KX be a
compact point. Then we have:

x=J{talaeCP(X)&acx}
— xC|J{1a|aeCP(X)&acx}
= e CP(X)Nxx<Ta By compactness
= Ja e CP(X)Nx.x="Ta

5 Note that for sober spaces, the in-
duced specialisation ordering <x and
the subset ordering C obtained by con-
sidering points as completely prime fil-
ters coincide.

16 Consider:
a#b
= agborbZa
= ftaptbor 1b2ta
— ta#1b

which shows that any compact point x lies in the image of the given
map.

2. Now that we have shown the correspondence between compact
points and completely prime opens, it is easy to see that { Ta | a €
CP(X) & a € x} corresponds to | gx, so | kx is directed and
x =1 Jxx

3. By [Joh82, Lemma II.1.9], every open set in a sober space is Scott-
open, so it suffices to show the converse that every Scott-open set is
open in X. This follows immediately by considering a Scott-open
U, which by Proposition 3.5.2 is a union of CP opens, so must itself
be open.

O

Since every algebraic DCPO induces a super-coherent space and
vice versa, we have a correspondence between the two objects. In
Proposition 3.1.6 we showed that the continuous functions correspond
to monotone, join-preserving functions, so we can lift this to an equiv-
alence of categories.

Corollary 3.5.7 (Stone Duality for Algebraic DCPOs). SCohLoc ~
SCohSp ~ AlgDCPO.

3.6 Spectral Spaces

The point of constructing a duality theory for domains is to find a
dual logic that we can use to reason about these domains. With this
goal in mind, the super-coherent locales of the previous section can
be seen as a logic for algebraic DCPOs. However, it is a logic with
infinitary operations, in particular the infinitary join operation. Can
we find a subcategory of super-coherent locales consisting of those
locales whose structure is determined only by its finitary operations?
This question can be stated more broadly for all locales, and the re-
sulting subclass of locales we shall call spectral locales' .

To reason about the finitary operations, we need to discuss presen-
tations of frames, which are syntactic descriptions in terms of gener-
ators and relations:

Fr (generators | relations)

The idea is that a presentation is a formula for formally construct-
ing a frame. Consider the set of formal joins of finite meets of the
generators, 0 and 1. These formal expressions are then quotiented
based on the expressions given by the frame axioms and the relations
given in the above specification, so that it is a frame by construction.

A model of a presentation Fr (G | R) is a locale A as well as an as-
signment of generators [—]4 : G — A, in such a way that the relations
R are also satisfied. Another way to understand the frame presented
by a presentation is that it is the unique frame satisfying the follow-
ing universal property. For any model (A, [—]4 : G — A), there is a

DUALITY THEORY 45

7 This name comes from the fact that
the spectral locales arise from the spec-
trum of a commutative ring, but this fact
will not be relevant to our development.
A synonym for "spectral” is "coherent",
but we will mostly avoid the latter to
avoid confusion with coherence spaces
which are an entirely different thing.

46 DUALITY IN DOMAIN THEORY

unique frame homomorphism Fr (G | R) — A making the diagram

commute:
G—— A
[<la .7
!

Fr(G|R)

Definition 3.6.1 ([Vic89, p. 41]). A presentation without relations is
free. If a frame can be presented without relations, we also say the
frame is free.

Example 3.6.2 ([Vic89, p. 40]). The only elements we can generate with
Fr(|)is0and 1 so this is the two-element frame 2. The frame Fr {a,b |)
on the other hand yields the 6-element frame shown to the right.

If the relations make no mention of infinitary operations, then es-
sentially the infinitary structure of the frame is freely generated from
a finitary part. This is what we mean by the structure of the locale
being generated by the finitary operations.

Definition 3.6.3. A finitary presentation of a frame is a description
Fr(G|R)
such that R only makes use of 0, 1 as well as finitary joins and meets.

Definition 3.6.4. A frame is coherent if it has a finitary presentation.
A'locale A is spectral if it is coherent as a frame.

We can now make formal'® this intuition that the infinitary struc-
ture of A is freely generated, using the notion of algebraicity!”.

Lemma 3.6.5. Let K be a distributive lattice. Then 1d1(K) is a coherent
frame.

Proof. First, observe that if K is a distributive lattice then Id1(K) is
not only an algebraic DCPO, but also a locale. Its binary meet [A | is
given by I N J. Since we have already shown before that Id1(K) has
directed joins, it suffices to say that binary joins is given by

IV]=l{xVy|xeLye]}

Then the join for any set of ideals S is the closure of S under binary
joins, and then the directed join of this closure. Moreover, one can
verify that any map induced by the universal property of the ideal
completion on K will be a frame homomorphism.

One can show that K can always be presented by DLat (G | R). R
is therefore a set of relations in the language of distributive lattices,
which is also exactly the language of a coherent frame presentation.
We may therefore also consider Fr (G | R), which we claim is isomor-
phic to A = Id1(K).

This isomorphism follows easily: for any model B of Fr (G | R),
we can apply the universal property of K to obtain a unique map
«, which then allows us to apply the universal property of A as the

1

\
a/ \b
\a/\b/

0

Figure 3.1: The frame generated by
Fr(ab|)

8 The core idea of the proof is that a
coherent presentation of A can also be
used to present a distributive lattice cor-
responding to KA such that A is the
ideal completion of KA.

¥ Note that in the previous section we
developed the duality theory for alge-
braicity on the points of a frame. This
time, we are developing duality theory
for algebraicity on the frame itself. In
the end, we will merge the two devel-
opments together.

ideal completion to obtain a unique map making the diagram to
the right commute. This shows A satisfies the universal property of
Fr (G | R), so they must be isomorphic.

O

Theorem 3.6.6 ([Vic89, Theorem 9.2.2]). Let A be a frame. Then the
following are equivalent:

1. Ais coherent.
2. Ais algebraic and KA is a sublattice of A.

Proof. By the representation theorem for algebraic DCPOs, we can
equivalently restate 2. as saying that A is isomorphic to Id1(K) for
some distributive lattice K. The theorem then follows easily from the
previous lemma:

(1. = 2.) If A is coherent, then it has a presentation Fr (G | R)
for which R is in the language of a distributive lattice. Applying the
lemma, this shows that A = Id1(K) where K = DLat{ G |R) is a
distributive lattice.

(2. = 1.) The distributive lattice K must have a presentation
DLat (G| R),and so Fr ({ G | R) = IdI(K) = A, which is a coherent
presentation of A. O

In section 2.2, we had an analogous situation but for the more gen-
eral scenario between posets and DCPOs. There, we could have gone
further and established an equivalence between the category of posets
and the subcategory of algebraic DCPOs with Scott-continuous func-
tions that preserve compact elements. We can now do the same be-
tween distributive lattices and coherent frames, which becomes a du-
ality between distributive lattices and spectral locales.

Definition 3.6.7. Let A, B be spectral locales. A locale morphism
f + A — B is spectral if the corresponding frame homomorphism
f + B — A preserves compact elements. The category SpecLoc is
the subcategory of spectral locales with morphisms being the spectral
maps?’.

Corollary 3.6.8. 1d1(—) : DLat’” — SpecLoc is an equivalence of cate-
gories.

We can extend the definition of spectral to topological spaces.

Definition 3.6.9. A topological space X is spectral if X is spectral.
Similarly, a continuous map f : X — Y is spectral if Q) f is spectral.

Let SpecSp denote the category of spectral spaces with spectral
maps as morphisms.

Theorem 3.6.10 ([Vic89, Theorem 9.2.4]). Spectral locales are spatial.

Combining Theorem 3.6.6 and Theorem 3.6.10, we find the follow-
ing characterisation of spectral spaces and spectral maps.

Corollary 3.6.11. 1. Let X be a topological space. Then X is spectral iff

DUALITY THEORY 47

20 In the literature, these are also called
perfect maps.

48 DUALITY IN DOMAIN THEORY

(a) X is sober,
(b) the compact open sets form a basis for X, and

(c) the compact open sets are closed under finite intersection?!.

2. Let f : X — Y be a continuous map between spectral spaces. Then f is
spectral iff for any compact open set U, f~1[U] is also compact.

3. There is an equivalence of categories SpecSp ~ SpecLoc ~ DLat?.

Now, we can combine the two conditions of spectrality and super-
coherence, and give it a more economic definition. Since spectral
spaces already have compact opens as a basis, and noting that CP-
opens are also compact, it suffices to say that the CP-opens generate
the compact opens.

Definition 3.6.12. A topological space X is spectral algebraic if X is
spectral and super-coherent. Let SpecAlgSp denote the category of
spectral algebraic spaces with the maps being arbitrary continuous
maps?2.

Proposition 3.6.13. Let X be a spectral space. Then X is spectral algebraic
iff every compact open set in X can be expressed as a finite union of CP-open
sefs.

Proof. (<=) Since X is spectral, every open set can be expressed
as a union of compact open sets, which in turn can be expressed as
a union of CP-opens. Hence, every open set can be expressed as a
union of CP-opens making the CP-opens a basis.

(==) By super-coherence, every compact open set U can be ex-
pressed as a union of CP-opens |J;c; U;. However, by the compact-
ness of U we can in fact express it as a finite union.

O

Just as with super-coherence, we can characterize the above prop-
erty purely in terms of the points, giving us a purely order-theoretic
characterization of the spectral algebraic DCPOs.

Definition 3.6.14. A poset P satisfies the "2/3 bifinite" property if for
each finite set S C P, the set M of minimal upper bounds of S is
finite, and moreover for any other upper bound m’ of S, there is some
me MstmCm'.

Let 2/3BifAlgDCPO denote the full subcategory of AlgDCPO
containing the 2/3 bifinite algebraic DCPOs.

Theorem 3.6.15 ([Vic89, Lemma 9.3.6 & 9.3.7]). 1. Let X be spectral al-
gebraic space. Then pt(QX) is an algebraic DCPO whose poset of com-
pact points satisfy the "2/3 bifinite” property.

2. Let P be a poset satisfying the "2/3 bifinite” property. Then I1d1(P) with
the Scott topology is a spectral algebraic space.

This allows us to sharpen the duality between algebraic DCPOs
and super-coherent spaces even further, to include those DPCOs whose
logic is finitary and therefore amenable to a proper logical treatment?3.

2 in particular, the whole space is com-
pact since it is the empty intersection.

2 This is a really important detail: we
do not restrict the maps to the spectral
ones, while the category SpecSp does
restrict to spectral maps.

The "2/3 bifinite" property can be
understood as a weaker version of
the bounded completeness condition in
Scott domains. The name is associ-
ated with another category of domains
called the bifinite domains. They ad-
mit a wider class of domain construc-
tions than Scott domains that come in
handy for modelling concurrent and
non-deterministic processes.

2 with actual flesh and blood (i.e. a fi-
nite set of axioms and inference rules)

Corollary 3.6.16. 2/3BifAlgDCPO ~ SpecAlgSp.

In the next section, we will see that Scott Domains are 2/3 bifinite
and sharpen the duality even further to obtain a topological charac-
terization of Scott domains.

3.7 Duality for Scott Domains

Previously, we described the localic correspondent of algebraic DC-
POs, and now we would like to sharpen it to Scott domains. One
aid in this goal is the observation that Scott domains are also spectral,
allowing us to use the duality we have just established for spectral
algebraic locales and 2/3 bifinite algebraic DCPOs.

Proposition 3.7.1. Let D be a Scott domain. Then D is 2/3 bifinite, so D is
spectral algebraic, when considered as a space.

Proof. Consider a finite set S C D. If S has no upper bound, then triv-
ially the 2/3 bifinite condition holds for S. If S has an upper bound,
then by definition of Scott domain, S has a least upper bound | |S.
Hence, the set of minimal upper bounds of S is the singleton {| |S},
and every upper bound is above | | S by construction. O

What does the Scott domain condition on D mean in terms of its
corresponding locale? well, compact elements x € KD correspond
to CP-opens 1 x. The join x Uy of two compact elements then cor-
responds to the CP-open 1 (xUy) = T x N T y. This join exists
whenever x and y are consistent, i.e. have an upper bound. However,
if no such upper bound exists, then that means tx N 1y = @, which
is also CP. So in any case, this means the CP-opens are closed under
intersection. It remains to check that this is sufficient.

Theorem 3.7.2. 1. If D is a Scott domain, then equipped with the Scott
topology it is a spectral algebraic space with the CP-opens closed under
intersection.

2. Let X be a spectral algebraic space such that the CP-opens are closed
under intersection. Then pt(QX) is a Scott domain.

Proof. 1. The preceding argument establishes this.

2. We have already shown that pt(Q)X) will be an algebraic DCPO,
so it remains to show pt(Q2X) has joins of consistent elements. So,
let x,y € pt(QX) such that x and y have an upper bound. If x and
y are compact, then we have the join since their correspondents as
CP-opens have meet, so this meet corresponds to the join of x and
y.

If x or y are not compact, we can obtain their join as follows. Con-
sider the set | xxU | ky. This set is directed, by the preceding
argument on the existence of joins for compact points. Hence, we
can take its directed join, and this gives us the join of x and y.

O

DUALITY THEORY 49

50 DUALITY IN DOMAIN THEORY

3.8 Approximable Mappings

With Corollary 3.6.16, it seems that to obtain a logic for programs all
we have to do is tidy up and connect our dualities:

1. Observe that SpecAlgSp is a subcategory of SpecSp.

2. Run SpecAlgSp under the duality SpecSp ~ DLat’”, obtaining
a dual equivalence to the category AlgDLat of distributive lattices
where every element is a finite join of prime elements?.

3. Chain the dualities up to obtain 2/3BifAlgDCPO ~ AlgDLat’’.

4. Construct a logical language for AlgDLat, and develop a semantic
relation® x F @ where ¢ is a formula denoting some element of
the distributive lattice and x is an element of the corresponding
DCPO. The soundness and completeness should be follow from
the duality. This we will do in the next chapter.

Unfortunately its not that easy, for step 1 is an "obvious" but al-
ready incorrect observation. While the objects of SpecAlgSp are in-
cluded in SpecSp, the morphisms are not. As established in chapter
2, we are interested generally in continuous maps between algebraic
DCPOs, so the morphisms of SpecAlgSp should consist of continu-
ous maps in general. However, the morphisms of SpecSp are spec-
tral maps, which is a more restrictive class of maps. We therefore
cannot run step 3, unless we expand the duality SpecSp ~ DLat’”
to cover arbitrary continuous maps. This means that we have to rep-
resent continuous maps between spectral spaces purely in terms of
their compact opens. Since a continuous map f : X — Y doesn’t
reflect compactness, it may associate a compact open in Y to an arbi-
trary open in X, which by algebraicity is the family of compact opens
in X that map into Y. In other words, we have to describe a contin-
uous map X — Y by a map KQY — P(KQX), or equivalently as a
relation between the compact opens of X and Y.

Of course, not just any such relation will do, there will be certain
properties that must hold if it were to simulate a continuous function.
Once again, the relation aRb is supposed to mean a C f~![b], so we
note some basic properties of how R interacts with the operations of
the lattice of compact open sets:

1. Given a family of compact opens g, if each 4; is a subset of f~![b],
then Ujcya; C f~1[b]. In lattice terms, Vi € [.a;Rb = \/;c; a;Rb.

2. Given a family of compact opens b;, if each f ~![b;] contains a, then
b; contains f[a], fla] C jc;b;- Therefore, a C Ny f1[bi] =
F~YNier bi]. In lattice terms, Vi € .aRb; = aR \;c; b;.

3. Suppose we have compact opens a and b such that a C f~1[b].
Then f[a] C b, so forany a’ C aand b’ D b, we have f[a']| C U/,
which means a’ C f‘l[b’]. In lattice terms, ' < aRb < bV —
a'RV'.

* This is just a translation of the condi-
tion in Proposition 3.6.13.

% Okay, maybe this step is not so easy.

Now, given such a relation R C KQX x KQY, let us try to recon-
struct a frame homomorphism?® fz~! : QY — QX. Now, by alge-
braicity of ()Y, every open b is the join of the compact sets below it,
ie. b =\ |b. Since fr ! has to preserve joins, fr ' is therefore
determined by how it behaves on compact opens in Y:

fRN0) = fr NV dxb) =V R kD)

Moreover, as explained initially, the relation R relates each compact
open cin Y to all the compact opens in X that map into Y, whose join
should form the original inverse image of c. Therefore, we have for
any compact open cinY,

fr () = \/{a € KQX | aRc}.

Combining the two requirements we therefore obtain the following
definition:

frH(b) = \/{a € KQX | 3c € KQY.c C band aRc}.

Let us now check that this indeed gives us a frame homomor-
phism.

(Preservation of 1) Taking I = @ in condition 2. we have that aR1
for every compact open a. We therefore have fg *(1ay) = V{a|aR1} =
V(KQX) = 1ax.

(Preservation of binary meets) We have the following chain of equal-
ities:

fr (b1 A D)
= \/ {2 € KQX |3c € KQY.c < by Aby and aRc}
=*\/ ({a € KOX | Jc; € KQY.c; < by and aReq}
N{a € KOX|3c; € KQY.cp < by and aRey})
:**(\/{a € KOX |31 € KQY.c; < by and aRey})
A (\/{IZ € KOX ‘ dcp, € KQY.cp < by and aRcz})
= fr7H (b)) AfRTH(b2)

(Preservation of arbitrary joins) Unfolding the definition of fz ~'(\/ B)
we obtain:
fr ' (\/B) = \/{a € KQX | 3c € KQY.c < \/Band aRc}

=\/{a € KQOX | 3c € KQY.3B' Cj, B.c < \/ B and aRc}

On the other hand, unfolding \/ fz ~![B] gives us:

V& 'Bl = \/{fr ' (b) | b € B}
- \/{\/{a € KOX |3c € KQY.c < band aRc} | b € B}
=\/{a € KOX|3c € KQY.3b € B.c < band aRc}

DUALITY THEORY 51

% Remember that by duality this corre-
sponds to a continuous map fr : X —
Y.

*We show that the two sets inside the \/
are equal. The (C) direction is obvious,
so we focus on showing (D). Take a €
KQX with aRcq and aRc, for some ¢ <
by and c; < by. Thency Acy < b1 Aby,
and moreover by condition 2. we have
that aR(cq A ¢2). Therefore there is some
c¢s.t. ¢ < by Abp and aRc.

**Denote
S1 = {ﬂ | dep e KOQY.e; <0 & ﬂRC]}

Sy = {{1 | de, € KQY.cr < by &ﬂRCz}.

We show V(51N S2) = (VS1) A (VS2)
by reasoning element-wise.

For the left-to-right direction, take x €
V(51 N'Sy). Then there is some a s.t. x €
a € S1 N Sy. Therefore, x € a € S and
X E€a € Sy,sox € \VSiandx € \V Sy,
which means x € (\V S1) N (V S2).

For the right-to-left direction, take x €
(V'S1) N (V Sz2). Therefore, there are a;
andap s.t. x €47 € Syand x € ap € S5.
Since a1 € S1, we have a1Rc; for some
compact ¢; < by so by condition 3. of R,
and the fact that a; A a, < a1, we have
also a; A apRcy. Therefore, a1 Aay € Sq.
By similar reasoning, we can show a; A
a; € Sy. In conclusion, we have x €
apNay € S1NSy,s0x € \/(S] 052).

52 DUALITY IN DOMAIN THEORY

Let us now try to prove the two to be equal. We clearly have that
V fr Y[B] < fr (V B), since the condition on each element a in the
expression of \/ fr ~![B] satisfies the condition in that of fz~!(\/ B):
just take B’ := {b}. For the other direction, we take an arbitrary a €
KQX with ¢ € KQY s.t. ¢ < VB’ and aRc, and we try to show that
a <V fr'[B].

It is not immediately clear that we can show ¢ < b for some b € B.
So to gather intuition let us first look at the case when R is the real
thing, i.e. is obtained from a continuous function f. Then we can
see a and ¢ as compact open sets, and aRc means a C f~!(c). Since
¢ C UB’, we can decompose ¢ as the union of all the sets ¢ N b for
b € B'. The idea then is that each ¢ N b induces a corresponding subset
ay, Cast a, C f~1(cnb), by taking a; := f~1(cNb) Na. Then we
have ayRcNb,and cNb < b,soa, € {a € KOX | Ic € KQY.TFb €
B.c < bandaRc}. We can then conclude a = Vycpa, < \V{a €
KQX | 3c € KQY.3b € B.c < band aRc} = f1[B].

There are a couple hitches in this plan. First, c N b is not necessarily
compact, but to fix this we just have to further decompose ¢ N b into
its unique decomposition of compact opens, as follows from the alge-
braicity of (Y. The bigger issue is that we implicitly used a property
of R that we have not imposed, even though it is true for relations of
the form — C f~!(—). This property can be summarized as follows:

4. If we decompose on the right, i.e. aR\/ C, then we can similarly
decompose on the left to obtain a = \/ A s.t. for each a’ € A, a’Rc’
for some ¢’ € C.

Once we impose this extra condition on R, we can show fz ! to
be a frame homomorphism - the proof for join-preservation follows
as we laid out. Now we have characterized the continuous maps
between spectral spaces in terms of certain relations between their
compact opens. The compact opens are approximations of arbitrary
opens, so we can think of these relations as approximations of continu-
ous maps.

Definition 3.8.1. Let A, B be distributive lattices. Then an approx-
imable mapping R : A — B is a relation R C A X B satisfying the
following conditions, where I and] are finite indexing sets:

1. Vie I.LIZ‘Rb - ViGI ﬂl‘Rb.
2. Vie I.ﬂRbi — aR /\iel bi'
3.4 <aRb <V = a'RV.

4. If aR \Vic1 b; Then there is a family {a;}c; such that a = Vjc;a;
and V] e€Jdie Ia]Rbl

Consider now the composition of two continuous maps f : X — Y
and g: Y — Z. We find that

aC f g Hc)) <= WcKAY.aC fb)andb C g (c).

In terms of relations, this is just the standard relational composition.

Proposition 3.8.2. Approximable mappings are closed under relational com-
position: if Ry : A — Band Ry : B — C are approximable then so is

RyoR; =Ry;Ry = {(a,c) | 3b € B.aRib and bRyc}

Moreover, the identity for this composition operation is the order relation,
ie. idA :SA-

Proof. The proof that approximable mappings are closed under rela-
tional composition is fairly routine:

1. Suppose for each i € I, we have 4;R;; Ryc. Then that means we
have a family b; s.t. a;R1b;Rpc. Therefore, by condition 2 for Ry,
we have \/;c; biRyc. Moreover, by condition 3 for Ry, each a; satis-
fies a;Rq V;e1 bi, so by condition 1 for Ry we have V;c;a;R1 Ve bi.
Combining the observations above, we have \/;c; a;R1; Rac.

2. Analogous to the proof for condition 1.

3. Suppose ' < aRj;Rpc < ¢’. Then we have b s.t. aR1bR;. By
condition 3 for Ry, we have a’R1b, and similarly by condition 3 for
Ry, we have bRyc’. Therefore, a’Rq; Roc’.

4. Suppose aRy; Rz V¢ ¢i, so then we have some b with aR1bRy Ve ¢i.
By condition 4 for Ry, we have a family {b;};c; such that b =
Vies b; and moreover for each j we have some ¢; s.t. b;Ryc;. Then,
by condition 4 for Ry, from the fact that aRy Vc; bj, we can simi-
larly decompose a as Vick a; s.t. for each k € K, there is some b;
s.t. axRqb;. As mentioned earlier, from this b; we have some ¢; s.t.
bjRZCi/ SO (Zle; RzCi.

To see that < is the identity, suppose aRy; < b. Then there is some
b’ s.t. aRib’ < b, so clearly by condition 3, aR1b. On the other hand,
if aR1b then aR1b < b so aRy; < b. By a similar fashion we can show
that < is the left-identity. O

Definition 3.8.3. Let SpecSp+ be the category of spectral spaces with
morphisms being arbitrary continuous maps. Let DLat+ be the cate-
gory of distributive lattices with the morphisms being approximable
mappings.

Theorem 3.8.4. There is an equivalence of categories SpecSp+ ~ DLat+%’.

Using this expanded duality, we can actually carry out the pro-
gram outlined in the beginning of this section. First of all, we observe
that when we have an approximable mapping between two prime-
generated distributive lattices?®, the fourth axiom may be simplified.

Proposition 3.8.5. Let A, B be prime-generated distributive lattices. Then
any relation R : A x B satisfying conditions 1 - 3 of Definition 3.8.1 and

4. If ais prime and aR \/;c; b; then there is b; such that aRb;.
is an approximable mapping.

Proof. To prove condition 4., we can always take the prime decom-
position of a4, and use 4’. to show that each of the prime component
maps to some b;. O

DUALITY THEORY 53

% Note that with how we defined it, the
morphisms of DLat+ are reversed w.r.t.
to that of DLat, so technically we don’t
get a dual equivalence anymore. This
makes it less confusing when think-
ing about the direction of approximable
mappings, but it is something to keep in

mind.)
% 1.e. exactly the lattices that correspond
to spectral algebraic spaces.

4
Logics for Program Reasoning

In this chapter, we use the duality theory developed in the last section
to construct a logic for reasoning about our imperative language Imp,
following closely the technique of [Abr91, Chapters 3 & 4]. Here, we
make the choice that our propositions/properties are to be compact
opens. This has the advantage that the logic can be described using
finitary operations, and in some sense there is no loss of information
since our domains are spectral spaces which are generated by their
compact opens. In another sense however, we do lose expressivity
as there are certain program properties that are not expressible as a
compact open. For a very simple example, consider the flat domain
IN | of natural numbers. The property of being greater than or equal
to 10 is not a compact open, for clearly we can find an open cover con-
sisting of each singleton {n} for n > 10 - this has no finite subcover.
Nevertheless, we stick with compact opens for now to keep things
simple. The work of Bonsangue [Bon98] extends the logic to consider
open sets, and even non-open sets in order to incorporate infinitary
conjunctions.
The technique in [Abr91] proceeds as follows:

1. Develop a propositional logic of properties, whose Lindenbaum
algebra® corresponds to the compact open sets of a spectral alge-
braic space. In other words, we develop a propositional logic of
compact opens.

2. Prove that the category of such propositional logics are equivalent
to the category of Scott domains.

3. Understand the domain constructions introduced in chapter 2, in-
cluding that of recursively constructed domains, in terms of these
propositional logics.

4. Develop an axiomatic theory of when a program exhibits a certain
property in this propositional logic. In other words, axiomatize the
relation €: D x KQD.

5. Prove (soundness &) completeness for this theory.

Points (1.) and (2.) are independent of the programming language,
so for these we will mention results from [Abr91] without proof, and

!i.e. the quotient of the propositions un-
der logical equivalence.

LOGICS FOR PROGRAM REASONING 55

refer there instead. For point (3.), since [Abr91] is interested in devel-
oping a logic for a generic meta-language for reasoning about arbi-
trary domains, they have to understand all the domain constructions
in full generality. For our case of modelling Imp, we only need to
worry about the domains 2,, IN|, Z | and X. As we will see, the
propositions in the logic corresponding to these domains are very in-
tuitive. The main work then lies in the axiomatization of point (4.)
where the difficulty lies in designing our axioms such that the com-
pleteness proof of point (5.) goes through. We are not just going
through this blindly however, for we are guided by the axioms of the
meta-logic already developed in [Abr91].

4.1 Domain Prelocales

The essential difference between a classical propositional language
and a Boolean algebra is that the former is a preorder, since if two
formulas logically entail each other it does not mean that they are
literally the same formula. For our logic of domain properties, we al-
ready know what our algebras are - they are the compact open sets of
spectral algebraic spaces, or equivalently distributive lattices where
every element is a finite join of prime elements. We now give the
pre-ordered version of these lattices, called domain prelocales.
In this section, we use I and] to denote finite indexing sets.

Definition 4.1.1. A spectral algebraic prelocale is a structure
A= (A <a,~4,04,14,Va,Na,Pa, Ta)

where

* |Alis a carrier set,

e <, and =4 are binary relations over |A],

® 04,14 are constants in | A|,

® \/4, A4 are binary operations on |A|,

e T4, P4 areunary predicates on |A|. Write T(A) = {a € |A| | T(a)}
and similarly for P(A).

satisfying the distributive (pre-)lattice axioms? and some axioms char-
acterizing the predicates>.
If A additionally satisfies

P(aAD)

then it is a (Scott) domain prelocale.

The sets P(A) and T(A) are supposed to represent the non-zero
prime compact opens and the compact opens that do not contain _L,
respectively. We say that a € A is terminating if T(a) holds®.

Note that even though we did not add it as an axiom, we can show
that P(A) indeed contains all the primes.

a<b b<c a<b b<a

a<a a<c a~b
axb
a<b b<a

a<c b<c

0<a a<aVvVbb<aVb

avVb<c

a<b a<c
a<l1

a<bAc aANb<aaNb<b

an(bVe)<(anb)V(aNc)

P(a) a~b P(a) a < Ve b
P(b) diela<yy;

by ...by € P(A)a = Vi, b
T(a) b<aVielT(a) VielT(a;)
T(b) T(Aierai) T(Vierai)
T(a) a#1
a#1 T(a)
*The termination predicate is neces-
sary because our imperative language
is a strict language, so certain reason-
ing principles in our program logic will
only hold assuming certain termination

conditions. This will become clearer in
the following sections.

56 DUALITY IN DOMAIN THEORY

Proposition 4.1.2. Let A be a spectral algebraic prelocale. If an element a
is prime in the sense that for any finite set S witha < \/' S, we have a < s
for some s € S, then P(a).

Proof. Consider a prime decomposition of a. By the assumption it has
to be equal to one of its prime components, so must itself be prime.
See the formal proof below.

3by..by € P(A).a =\, b;

a < \/?:1 b,' Hblbn S P(A).{Z = ?:1 bl'
—— Ass
a < b; bi<a
P(b;) b ~a
P(a)
O

The notion of morphism between prelocales are the approximable
mappings that we discussed in the previous chapter, since they are
the ones that correspond to continuous maps.

Definition 4.1.3. Let A, B be domain prelocales. Then an approximable
mapping R : A — B is a relation R C A X B satisfying the following
conditions:

1. Vi€ L.a;Rb = V¢ a;R0.

2. Vi€ L.aRb; = aR \j¢1 bi.

3. <aRb <V = a'RV.

4. If P(a) and aR \/;c; b; then Ji € [.aRb;.

This allows us to prove that the two categories are equivalent, giv-
ing us a logical view of domains.

Definition 4.1.4. Let A be a spectral algebraic prelocale. The Linden-

baum algebra A/ ~ is the distributive lattice obtained by quotienting® SWe can easily show that ~4 is a
conguence on the distributive lattice op-
erations based on the prelocale axioms.

|A| by the relation ~ 4.

Theorem 4.1.5. The two functors
F(D) = (KOD, <, =,@,D,U,n,CP(D), {U | L¢ U})

and
G(A) = {F C |A| | F is a prime filter }

form an equivalence of categories Scott ~ DPL.

4.2 Domain Prelocales for Imp

In this section, we define some domain prelocales that correspond
to the domains we care about for modelling Imp. Ideally, we want
to present the prelocales in a syntactic way by freely generating them

from some generator elements and axioms®, so that our program logic 6 This free generation of algebraic struc-
tures is a common construction in alge-
bra, and we refer to ?? for a primer on
this technique.

LOGICS FOR PROGRAM REASONING 57

is a fully syntactic construction”. This also leads to a better under-
standing of the compact open sets in our domains. However, this
would add many induction cases to the completeness proof of our
logic. To strike a fair balance, we avoid doing this for the flat do-
mains IN | ,Z, and 2, . We already understand the compact opens in
flat domains really well anyway.

Definition 4.2.1. Let L(2) be the domain pre-locale obtained by

(KO2,,C,=,0,2,,U,n,CP(D), {U]| L& U}),

and similarly for L(Z). We define denotation functions [-] : L(Z,) —

KQOZ | and [-] : L(2,) — KQO2, as the identity function.

In a flat domain, the compact opens are just the finite open subsets
plus the whole set itself. We have an even more explicit description
of the prime elements: in a flat domain they just correspond to the
singleton open subsets, plus the whole set itself.

This leaves only L(X) for which we do not yet have a good un-
derstanding of the compact opens. We shall analyze KX and find
some simple elements that can be used to generate all the compact
opens under A and V, as well as some axioms that the elements have
to obey. Based on this analysis, we define a freely generated prelocale
that is equivalent to KOX.

The starting point of our analysis is the characterization of the com-
pact elements in the Scott domain [D — E] and [D — E] (Proposi-
tion 2.4.7). Since we know that the CP-opens correspond to the com-
pact elements and that they generate all the compact opens, they are
prime® candidates for our generating elements.

A compact pair function (d;e) where d and e are compact corre-
sponds to the CP-open

(1d) = (te)={f € [D—E]|Vd Jd.f(d') Je}.

A compact function in [D — E] is a join of a finite consistent set of
compact pair functions, which topologically corresponds to the in-
tersection of their corresponding CP-opens. The consistency require-
ment corresponds to asking that this intersection be non-empty, i.e.
Nic1((1d;)) = (Te)) # @. For [D — | E|, there is an additional
requirement that each d; # L.

Therefore, every CP-open can be expressed as as a finite meet

N\ (a; = b;)

icl

as long as the a; and b; are CP-open and A;c;(a; — b;) is terminat-
ing. Specializing to our scenario, we want to consider the CP-opens
inX =[N, —, Z,]. Since the CP-opens in N | and Z are either
singletons or the whole set, a compact pair function just corresponds
to a CP-open of the form

(n~k)={seX|s(n) =k} neNkeZ

7 After all, to some people a formal sys-
tem is only a logic if it is given by a fi-
nite set of axiom schemas and inference
rules.

8 Pun fully intended.

58 DUALITY IN DOMAIN THEORY

or the top element 1y which is always CP-open, so we will ignore it
in our following analysis.

As for consistency, a set of such CP-opens are consistent if it does
not contain a pair (n ~» ky),(n ~» ky) with k; # kp. Therefore, a
CP-open is in general of one of the following form:

/\(l’li ~ kl) with n; # n; for all i 7&] el
icl
This means that a compact open set is in general a finite join of CP-

opens of the above form. Based on this analysis, we can define the
following prelocale.

Definition 4.2.2. Let L(X) be the domain prelocale generated by gen-
erators of the form

{(n~k)|neN,keZ}.
satisfying additional rules:
k1 # ko n €N Vi,jEI.ﬂi:nj:>i:j

o -P-
(n~k)A(n~ky)=0 " P(Aier(ni ~ k;)) A

We will now define a function that interprets elements of L(X) as
compact opens in 2. To verify that our construction is correct, we
prove that this prelocale is isomorphic to KQZX. Along the way, we
have to prove a soundness’ and completeness theorem.

Definition 4.2.3. We define the function [—] : L(X) — KQZX on its
generators:

[n~ k] ={seX|s(n) =k}

Which extends to L(X) by interpreting conjunction by intersection,
and disjunction by union.

Theorem 4.2.4 (Soundness). Let a,b € L(X). Then
a<b = [a] C[b].

Proof. By induction on the rules for a spectral algebraic prelocale.
Note that we have not added any rules producing a <-statement to
L(Z). O

We prove completeness for prime elements first, which we can then
easily lift to all elements.

Lemma 4.2.5 (Prime Completeness). Let a,b € P(L(X)). Then
[a] C[b] = a<b.

Proof. By induction on the proof of P(a) and P(b). We prove only the
cases for L(X) axioms, since the cases for the generic domain prelocale
rules are obvious.

If P(a) and P(b) are derived by (X-P-A), then a = Ajcj(nj ~ kj)
and b = A;c;(n; ~ k;), so we have that for each i € I,

[[aﬂ g ﬂ [[1’11‘ Wkl]] g [[7’11‘ Wkl]]

iel

Note that an element in this generated
prelocale can always be expressed as a
join of meet of generators, by distribu-
tivity. Since the rules we added im-
ply that any meet of generators is either
prime or 0, we automatically have that
any element can be expressed as a join
of primes (the Os can be vanished from
the join).

°In fact, the map we define below is
only well-defined due to soundness.

LOGICS FOR PROGRAM REASONING 59

Therefore, by induction hypothesis, a < n; ~~ k; for each i € I, which
means a < A;c;(n; ~ k;) = b. O

In order to prove completeness for all elements, we use the fact that
every element can be decomposed as a join of primes, and then apply
the prime completeness.

Theorem 4.2.6. 1. Leta,b € L(X). Then

[a] C[b] = a<hb.

2. [—] induces an isomorphism from (L(X)/~) to KQX.

Proof. 1. Taking prime decompositions 2 = V;cja; and b = V;c;b;
with each [a;] = 1s; and [b;] = 1¢;

[a] < [2]

— Ilie\/laiﬂ - L\/}bjm

= Ulal < U [b]
icl j€]
= Vi€ 1.3]' e [[aiﬂ - [[b]]
= Vi€ lLdj€ Ja; <b; by completeness for primes
= Vielag < \/b]
i€l

— Va,§Vb]

iel j€]

2. Equivalently, we can show that [—] is a surjective function satisfy-

mng
Va,be L(X)a<b < [a] C[}]

Of course, this condition is just soundness & completeness as we
have just proven, and the surjectivity follows from by our analysis
of prime opens (i.e. it is surjective by construction).

O

As a consequence of completeness and our previous analysis, we
have the following normal form theorem for L(X), which is baked
into the design of L(X) in the first place.

Corollary 4.2.7. Let a € P(L(X)). Then either a ~ 1, or there are
{niticr € Nand {k;}ic; € Z with n; # n; foralli,j € I such that

ar \(ni— k).

iel
4.3 The Program Logic of Imp

Now that we have a language for program properties set up, we are
finally in the position to define the full program logic. Our logic turns
out to be a variant of Hoare logic: this is not an ad-hoc decision, but

60 DUALITY IN DOMAIN THEORY

rather its naturally motivated by translating Imp into the metalan-
guage of [Abr91, Chapter 4] and analyzing the form of verifications
in their logic. In the next section, we will compare and contrast our
logic with more standard forms of Hoare logic found in the "wild".

The basic form in our logic is a Hoare triple [®] M [¥] where M is
a program (i.e. a command, boolean expression or arithmetic expres-
sion), ® is a property of states, and ¥ is a property of the program
type of M. One should interpret the Hoare triple as saying that the
result of running program M at any state exhibiting property ® ex-
hibits property ¥.

4.3.1 The Logic Limp

Let the following symbols denote
* wpel(Z))

* xxeL2)

* ¢ 0el(X)

e O, ¥,0,9,Y are metavariables standing in for an element of any
of the pre-locales.

We also denote singleton sets by the element it contains instead of
the set itself, to avoid clutter with braces. For example, the singleton
set {tt} € L(2)) is denoted just tt. Furthermore, we lift the de-
notations of the boolean and arithmetic operations as operations on
compact open sets of IN | and 2, defined as follows:

L4 DCDIB = \/{ T(kl [[D]] k2) | k1 S Dc,kz S ﬁ} ford e {+, -,*,=,<=}
o xOk:=V{1(by[O]b2) | by € x, b2 € x} for O € {and, or}
e not x:= V{1 ([not]b1) | by € x}

Note that we take the upwards closure only to cover the case when
one of the operands contains L, where we have to ensure we take
every element above L to make the resulting set open. For example,
this ensures thatif a = 1y, thena + g =1y .

Generic Rules

— H-1 ——— H-0
(@] M [1] [0] M [Y¥]
[@IM¥ [eIMie] o [PIM[¥] [OIM[¥] 0 e<® [®IM[Y] Y <Y
[®] M [¥ A O] [V O] M [Y¥] [@] M [¥]
Rules for Arithmetic Expressions
—— H-Z H-var-A
[¢] k € Z [K] [Nicr(ni ~ k;)] n; [ki]
[¢] A1 [a] [¢] Az [B] e [¢] Av [a] [¢] Az [B] Hos [¢] Av [a] [¢] Az [B] o

(9] A1 - Az fa - B] (9] A1 + Az [a + f] (9] Ax * Az [a + p]

LOGICS FOR PROGRAM REASONING 61

Rules for Boolean Expressions

— Htt — Hff
[¢] tt [tt] [¢] £ [Ff]
LI OB B OB 9B
[¢] not B [not x] [¢] B and By [x and x| [¢] By or By [x or]
WA (g Alp WAl 9408
[¢] A1 = Ag [a = B] [¢] A1 <= Ay [a <= B]
Rules for Commands
—————— H-skip [p] C1 (6] (6] C2 [9] H-
[¢] skip [¢] [¢] C1;Ca [y]
Bl WG olBIrfl glCall
[¢] if B then C; else C; [¢] [¢] if B then Cy else C; [¢]
#Bltd] [gIClol Olwnite BaoClyl LI
[¢] while B do C [¢] [¢] while B do C [¢]
[¢] Ala] T(a) Hodet ekl H-def-A
[¢] def n := A [Viea(n ~ k)] [Nier(ni ~ k)| def n := Af[n; ~ kil

4.3.2 The Semantics
We wish to interpret a Hoare triple [®] M [¥] as saying
[M] [[®]] < [¥],

i.e. whenever a state s € X exhibits property ®, then the program M
running at state s exhibits property Y. The denotation operations for
programs and properties are of course the ones given in section 2.5
and section 4.2, respectively.

To that end, we write - [®] M [¥] to say a Hoare triple is derivable
by the rules given above, and = [®] M [¥] to mean [M] [[®]] C [¥].

4.3.3 Soundness

As usual, proving the soundness of our logic is a simple matter of
induction.

Theorem 4.3.1. 1. Let A be an arithmetic expression in Imp. Then
Flgl Ala] = F[p] Alal.

2. Let B be a Boolean expression in Imp. Then
=1l Bx] = F ¢l B [x]-

3. Let C be a Command in Imp. Then

FlolCly] = F 9] Cly]

Proof. By induction on the rules. O

62 DUALITY IN DOMAIN THEORY

4.3.4 Completeness

For the completeness proof, as before we prove the result for prime
elements first, since we have a much better grasp on them. It may
feel like the rules seem to fit perfectly in the completeness proof, but
this is because we chose the rules in such a way that the completeness
proof goes through. In this sense, the logic is determined by our de-
notational semantics, and one should view the following proof as an
explanation for why we chose the rules above.

Lemma 4.3.2. Let A be an arithmetic expression in Imp, ¢ € P(L(X))
and o € P(L(Z)). Then

Flpl Ala] =+ [9] Ala]

Proof. First, let us analyse . InIN |, either « is a singleton {k} or it is
1N, - In the latter case, we can always derive the Hoare triple [¢] A [1],
so we can proceed with the assumption « = {k}. Moreover, since ¢ is
prime, [¢] = 1's for some compact element s € . We now carry out
the proof by induction on A.

For O € {+, -, x}, we have the inductive cases:

F [¢] A1DA; [K]
= [A1DA] [1s] C {k}
= [A10A;] (s) € {k}
= [A10A47] (s) =k
= [A1] (s) [M] [A2] (s) =k
= Jkq, ko € Z.k1 [O] ky = kand [A1] (s) = ky and [A3] (s) = ko

= [A1] (Ts) C {ki} and [A2] (1s) C {ko} by monotonicity
= F[¢] A1 [k] and F [¢] A [k2]
= F[¢] A1 [kn] and = [¢] A; [ko] by IH

= F [¢p] A10A; [{k1}0{ka} = k1 [O] ko = k]

In the case A is a constant k' € Z, we either have a contradiction if
k' # k, or if k = k' then we can derive the Hoare triple by H-Z.
Finally, if A is a variable n € IN, then

= ¢l n [k
= [[1s] € {k}
= [n](s) =k
= s(n) =k
If we apply the normal form theorem on ¢, then we find that either

s = lier (ni;k;) or s =Ly. In the first case, we find that n = n; and
k = k; for some i € I, so we can apply the rule:

H-var-A

[Aie1(ni ~ ki)] n; [ki]
In the second case, we have a contradiction, since 1y (n) =Lz #
k. O

LOGICS FOR PROGRAM REASONING

Lemma 4.3.3. Let B be a Boolean expression in Imp, ¢ € P(L(X)) and
X € P(L(2y)). Then

F o]l Bx] = F[x] Bx]

Proof. Analogous to the proof of prime completeness for arithmetic
expressions. In fact, since Boolean expressions make no use of vari-
ables, this should be easier and not require the normal form theo-
rem. O

Lemma 4.3.4. Let C be a command in Imp and ¢, € P(L(X)). Then

= ol Cly] = F (9] Cly]

Proof. Since ¢ and 1 are prime, there are compact elements s, t € KX
such that [¢] = T s and [¢] = 1 t. We now prove this result by
induction on C.

* (C = skip) We have by soundness & completeness for L(X),

=gl skip[y] < [skir] [Pl C [¥] <= WIS V] = ¢ <.
Therefore, we can derive the Hoare triple by:

— H-skip
[¢] skip [¢] p<9y

(9] skip [y]

e (C=1if B then C; else Cp) We have that

H-<

F [¢] if B then C; else C; [¢]
=t C [if B then C; else Cp] (s)

Then, depending on the value of [B]; we have three possible sce-
narios. If [B], = tt, wehave [if B then C; else Cp] (s) = [C1] (s)
so:

t C [C1] (s) and [B], = tt
= [C1] (s) € [¢] and [B], € {tt}
= [C1] (1s) € [¢] and [B] 4 C {tt} by monotonicity
= F [¢] C1 [¢] and F [¢] B [tt]
= F [¢] C1 [¢] and F [¢] B [tt] by IH
= F [¢p] if B then C; else C; [¢] by H-ite-tt

We can prove the case for [B], = ff analogously using H-ite-ff.
Finally, if [B], =L then [if B then C; else C] =1,s0t =1
implying that i ~ 1. We can then derive the required Hoare triple
by H-1.

e (C = (Cq;Cy) We have that

F[¢] C1:Ca [y]
=t C [C] ([C1] (9))

63

64 DUALITY IN DOMAIN THEORY

By Proposition 2.4.4, and the fact that X is a Scott domain, we can
decompose [C;] as a directed join

|_| (risti)
iel

of compact pair functions. Since t is compact, and t C | J;; (ri; ;) ([C1] (s)),
there is some i € [such thatt T (r;t;) ([C1] (s)). Now, either

[C1] (s) 3 r; or not. If itis, then t T (r;t;) ([C1] (s)) = t;, so we

have

t=(rit) (ri) E (rizti) (ri) E[C2] ()
By the surjectivity of [—] : L(X) — KQZ, there is some 6 such that
[0] = 1 ;. Therefore, we now have
9] Ci [0 and F [6] C; 9]
By the induction hypothesis and applying rule H-;, we can con-
clude that F [¢] C1; Cy [¢].
If [C1](s) A r;, thent =1 meaning ¢ ~ 1, so we can derive -
9] C1: Cp [9] by H-1.
e (C =while B do C;) We have that

F [¢] while B do Cq [¢]
=t C [while B do Ci](s)

= tC || Fye (L)(s)

new

= dn € w.t C Fyc (L)(s) By compactness of t

Without loss of generality, we can take the least such n for which
this is true. We now prove the result by an inner induction on 7.

- (Base case n = 0) Then (s;t) =L, so in fact { =L. This means
1 ~ 1, so we can just use the rule H-1 to derive the Hoare triple.

- (Inductive case n + 1) Depending on the value of [B], we have
three possible scenarios. If [B], = tt, then we have

Fi o (L)(s) = Fyc, (L)(IC1] (5)).

Therefore, we can carry out the proof:

(L)(s)

(L) (ICD (5))

=t C Fy e, (L)(IG] (5))

= Jr € KQX.r C [C4] (s) and t T F ¢ (L)(r) by same technique as in the previous case
= F[p]Cy[0land t T Fg (L)(r) where [0] = 1r

= F [¢] C; [] and + [f] while B do Cp [¢] by outer and inner IH respectively

= [¢] while B do Cj [¢] by H-while-tt

n+1
tC FB,C1

:>tEF}T}l,C1

LOGICS FOR PROGRAM REASONING 65

If [B], = ff, then FgE}(J_)(s) = s,s0 we have t C s. This means
¢ < ¢ and we have the derivation

by outer IH

(91 B [#1] H-while-ff
[¢] while B do Ci [¢] o<y

[¢] while B do Ci [¢]

H-<

If[B]; =L, then[while B do Ci] = [yen F5c, (L) = Unen L=1
sot =_1. This implies that ¢ ~ 1, so we can derive the required
Hoare triple by H-1.

e (C=def n := A)Since ¢ and ¢ are prime, we can use the normal
form theorem. If ¢ ~ 1, then we can immediately apply the H-1
rule. If ¢ ~ 1, then since s =L we have

tC [def n := A](L) =L [n:=[A],]

If [A], =1, thent C1 sot =1 in which case i ~ 1. Otherwise,
if [A] (L) = k, then t C (n;k). This means t(m) =1 for m # n,
and either t(n) = k or f(n) =_L. The latter case again means 1) = 1,
so let us focus on when t(n) = k, in which case t = (n;k). Then
¢ ~ n ~+ k, so we can apply H-def.

Finally, if ¢ ~ Aic;(n; ~ ki) and ¢ ~ Ajcj(nj ~ k;), then unfold-
ing what we have yields

t=| | (nj;kj) C [def n := Al (s = | | (ni;ki))

jel icl

As before, we can reason by cases on [A]. If [A] (Lies (ni;ki)) =L
then we have a contradiction unless | = @, in which case p = 1. If

[A] (Uieg (ni;ki)) = k then
[def n := A (|] (niki)) = (k) U (|| <”i;ki>>
iel iel—{i|lnj=n}

This means that forany j € |, nj = nwithk; = korn; =mn; # n
and k; = k; for some i € I. We can therefore derive the required
hoare triple by combining (using H-A) multiple applications of the
H-def and H-def-A rule.

O
With these, we can prove the completeness theorem as a corollary.

Theorem 4.3.5. 1. Let A be an arithmetic expression in Imp. Then

Flol Ala] = F [9] Ala].

2. Let B be a Boolean expression in Imp. Then

=l¢] Bx] =+ [¢] B [x].

66 DUALITY IN DOMAIN THEORY

3. Let C be a Command in Imp. Then

FlplClyl = F (9] Cy]

Proof. The proof is the same for all three results by alluding to prime
completeness. Therefore, we only demonstrate it for commands.

=l Cly]
— E[VealClV By prime decomposition
el jel
= Vie l.3j €].F[¢i] C [yj]
= Vi € 1.3j €]. - [¢;] C [i;] by prime completeness

= Vil CLV)] by H-< and H-v
icl j€j
=+ [¢] C[y]

4.4 A Comparison with "Wild"” Hoare Logic

It is especially pleasing that despite not explicitly setting out with this
goal in mind, the resulting logic we obtain is still in the very recog-
nizable and intuitive form of Hoare logic. Of course, there are some
differences with standard Hoare logic. We will compare our program
logic Limp with the Hoare logic found in the literature. Specifically,
the "Wild" Hoare logic we will compare with is from [Win93, Chapter
6].

The first observation is that the Hoare triples in [Win93] are partial
correctness assertions, i.e. a Hoare triple {¢} C {¢} states that start-
ing in a state satisfying ¢, if C terminates, then the end state satisfies 1.
On the other hand, our logic is able to express the concept of termina-
tion via the L element in the domain. If we have that T(¢), then our
Hoare triple [¢] C [¢] expresses that starting at state ¢, C terminates
with end state satisfying . This is known as total correctness. This
may seem like a win, but one disadvantage of our approach is that
we cannot also reason about partial correctness, because if ¢ contains
L then it has to be the trivial assertion.

Another difference is that the logical language of the Hoare logic in
[Win93] is much stronger. It is essentially a full first-order logic with
the signature being the variables (of the programming language), and
2 being the first-order structures. Of course, since our logic is a propo-
sitional logic and can only express compact open sets, it is far more
limited. Our logic does not even have a negation.

Finally, we inspect the rules of their logic. The rule for skip and
sequencing of commands (;) remains the same, however the rule for
assignments is quite different. They can afford to be more efficient
since they can consider arbitrary substitutions of the precondition by
the value, while our logic cannot since it does not even have the abil-
ity to express arbitrary arithmetic expressions.

LOGICS FOR PROGRAM REASONING 67

{p[A/n]} def n := A {¢}

The rule for conditionals also looks quite different, for by law of
excluded middle, and by the expressivity of their assertion language,
they are able to incorporate the boolean expression and its negation
into the precondition of the components.

{¢AB} Ci {9} {¢A-B} G {¢}
{¢} if B then C; else C; {y}

This is stronger than our rule for conditionals. The closest we can

get is the following rule, by using the completeness theorem!*:

(9] BIff,tt] (9] Ci[p] [¢p] Co[y]
[¢] if B then Cy else C; [¢]

H-ite

but this is still weaker since in proving [¢] C; [¢] we cannot use the
fact that B holds, and similarly for [¢] Ca [¢]. We cannot make the
assertion of states that make B true in our logic, since this may not be
compact.

The rule for while loops in their logic is

{p AB} C {¢}
{¢} while B do C {¢ A B}

This works in their logic because they are concerned with partial cor-
rectness assertions. The closest approximation we have in our logic
would be something of the following form:

(9] B[tt, ff] [¢] C[¢]
[¢] while B do C [¢]

But this is blatantly unsound: take C = def 3 := 5, B = tt, and
¢ =(3~5).

0to prove this proof-theoretically it is
not at all obvious. First, we need
to use prime decomposition on ¢.
Then, we need to show that for each
prime component ¢;, = [¢;] B [tt, ff]
implies either + [¢;] B [tt] or +
[¢i] B [ff]. This is somewhat of a
poor man’s excluded middle. Finally,
we apply either the H-ite-tt or H-
ite-ff rule appropriately to conclude
[¢i] if B then C; else C; [¢)] for ev-
ery ¢;, before putting it together using
H-v.

5
What Next?

We conclude with some questions to further investigate and direc-
tions to take this research in.

5.1 The Compact-open Restriction

In the last section of the previous chapter, we compared our logic with
standard Hoare logic and found some deficiencies. Some of these de-
ficiencies are rectifiable by considering our program properties to be
arbitrary open sets, instead of compact opens. However, to maintain
completeness for the corresponding notion of L(X) we would need
arbitrary disjunctions. Can we find a middle ground by restricting
the logic just to using 3 instead of arbitrary disjunctions?

5.2 Are Elements of Domains Possible Worlds or Possibili-
ties?

The philosophical interpretation! of Stone duality establishes the ele-
ments of the space corresponding to a logic as possible worlds. There

is an alternative duality (called choice-free Stone duality) due to Bezhan-

ishvili & Holliday [BH19; Hol21] where the elements of the corre-
sponding space are to be interpreted as partial possibilities.

By using Stone duality, are we committing to the idea that the el-
ements of a domain are possible worlds? This makes some sense be-
cause we should think of programs as completed things-in-and-of-
themselves. At the same time, if we only care about complete states
(i.e. maximal elements of Xyp) then many elements of Xy are su-
perfluous from the denotational point of view. However, from the
logical point of view they are very useful: the compact pair functions
(n; k) are elements that precisely express the property of having vari-
able 1 be value k. In my opinion, this resembles a partial possibility,
more than a possible world.

From a technical point of view, it would be interesting to see if we
can establish program logics by applying Choice-free Stone duality to
domain theory, and comparing them to the ones obtained by classic
Stone duality.

! or at least some interpretation.

WHAT NEXT? 69

5.3 Accessible Categories as Generalizations of Algebraic DC-
POs

An obvious generalization of the order-theoretic domains in this re-
port is to consider their categorification. Accessible categories are the
categorification of algebraic DCPOs, and recently Ivan Di Liberti es-
tablished the duality theory (named "Scott adjunction”) for algebraic
DCPOs and their Scott topos (a generalization of Scott domains).

At the same time, in the study of concurrent programs it has been

suggested that models of concurrency should be categorified domains? 2 specifically, we should consider certain
presheaf categories on categories of pro-

CWO05]. It 1d be interesting to study logics f i
[]. It would be interesting to study logics for concurrency using gram execution path as a domain.

the Scott adjunction and compare them with existing concurrent log-
ics (e.g. separation logic), in analogy with what we did in this project.

Bibliography

[Abr91]

[AJ95]

[BH19]

[Bon9s]

[CWO05]

[Hol21]

[HP90]

[Joh82]

[P1o83]

[SLG94]

[SVng]

[Vic89]
[Win93]

S. Abramsky. “Domain theory in logical form*”. In: Annals of Pure and Applied Logic 51.1 (1991),
pp. 1-77. 1sSN: 0168-0072. DOI: https://doi.org/10.1016/0168 - 0072(91) 96065 - T. URL:
https://www.sciencedirect.com/science/article/pii/016800729190065T.

S. Abramsky and A. Jung. “Domain Theory”. In: Handbook of Logic in Computer Science (Vol. 3):
Semantic Structures. USA: Oxford University Press, Inc., 1995, pp. 1-168. ISBN: 019853762X.

N. Bezhanishvili and W. H. Holliday. “Choice-free Stone Duality”. In: The Journal of Symbolic
Logic 85.1 (Aug. 2019), pp. 109-148. 1SSN: 1943-5886. DOI: 10.1017/js1.2019.11. URL: http:
//dx.doi.org/10.1017/js1.2019.11.

M. M. Bonsangue. Topological Duality in Semantics. Vol. 8. Electronic Notes in Theoretical Com-
puter Science. 1998. URL: https://www.sciencedirect.com/science/journal/15710661/8.

G. L. Cattani and G. Winskel. “Profunctors, open maps and bisimulation”. In: Mathematical Struc-
tures in Computer Science 15.3 (2005), pp. 553—-614. DOI: 10.1017/50960129505004718.

W. H. Holliday. “Possibility Semantics”. In: Selected Topics from Contemporary Logics. Ed. by M.
Fitting. College Publications, 2021, pp. 363-476.

H. Huwig and A. Poigné. “A note on inconsistencies caused by fixpoints in a cartesian closed
category”. In: Theoretical Computer Science 73.1 (1990), pp. 101-112. 1SSN: 0304-3975. DOLI: https:
//doi.org/10.1016/0304-3975(90)90165-E. URL: https://www.sciencedirect.com/science/
article/pii/030439759090165E.

P. Johnstone. Stone Spaces. Cambridge Studies in Advanced Mathematics. Cambridge University
Press, 1982. 1SBN: 9780521337793. URL: https://books.google.nl/books?id=CiWwoLNbpykC.

G. D. Plotkin. Domains. 1983. URL: https: //homepages . inf.ed.ac.uk/gdp/publications/
Domains_a4.ps.

V. Stoltenberg-Hansen, 1. Lindstrom, and E. R. Griffor. Mathematical Theory of Domains. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1994. DOI: 10.1017/
CB09781139166386.

G. Sambin and S. Valentini. “Topological Characterization of Scott Domains”. In: Archive for

Mathematical Logic (forthcoming). URL: https: //www . math . unipd . it /~silvio / papers/
WorkInProg/TopologicChar.pdf.

S. Vickers. Topology via Logic. USA: Cambridge University Press, 1989. ISBN: 0521360625.

G. Winskel. The Formal Semantics of Programming Languages: An Introduction. Foundations of
Computing. MIT Press, 1993. 1SBN: 9780262731034. URL: https://books.google.nl/books?
1d=0L9NEAAAQBAJ.

https://doi.org/https://doi.org/10.1016/0168-0072(91)90065-T
https://www.sciencedirect.com/science/article/pii/016800729190065T
https://doi.org/10.1017/jsl.2019.11
http://dx.doi.org/10.1017/jsl.2019.11
http://dx.doi.org/10.1017/jsl.2019.11
https://www.sciencedirect.com/science/journal/15710661/8
https://doi.org/10.1017/S0960129505004718
https://doi.org/https://doi.org/10.1016/0304-3975(90)90165-E
https://doi.org/https://doi.org/10.1016/0304-3975(90)90165-E
https://www.sciencedirect.com/science/article/pii/030439759090165E
https://www.sciencedirect.com/science/article/pii/030439759090165E
https://books.google.nl/books?id=CiWwoLNbpykC
https://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps
https://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps
https://doi.org/10.1017/CBO9781139166386
https://doi.org/10.1017/CBO9781139166386
https://www.math.unipd.it/~silvio/papers/WorkInProg/TopologicChar.pdf
https://www.math.unipd.it/~silvio/papers/WorkInProg/TopologicChar.pdf
https://books.google.nl/books?id=oL9NEAAAQBAJ
https://books.google.nl/books?id=oL9NEAAAQBAJ

	Introduction
	The Simple Imperative Programming Language Imp
	Semantic Modelling of Procedures with ImpProc
	Reasoning About Programs
	Prerequisites

	Domain Theory
	Directed-complete Partial Orders
	Algebraic DCPOs
	Constructions on DCPOs
	Scott Domains
	Denotational Semantics of Imp
	Solving Domain Equations
	Denotational Semantics of ImpProc

	Duality Theory
	Topologizing Domains
	Topological Spaces & Locales
	Sober Spaces & Spatial Locales
	Duality for Sober Spaces & Spatial Locales
	Duality for Algebraic DCPOs
	Spectral Spaces
	Duality for Scott Domains
	Approximable Mappings

	Logics for Program Reasoning
	Domain Prelocales
	Domain Prelocales for Imp
	The Program Logic of Imp
	A Comparison with "Wild" Hoare Logic

	What Next?
	The Compact-open Restriction
	Are Elements of Domains Possible Worlds or Possibilities?
	Accessible Categories as Generalizations of Algebraic DCPOs

	Bibliography

