
BEng Individual Project Report

Department of Computing

The Provability Semantics of
Metaprogramming

Author:
Alyssa Renata

Supervisor:
Dr. Nicolas Wu

Second Marker:
Prof. Alastair Donaldson

June 27, 2022

Abstract

Theorem provers such as Lean and Coq use metaprogramming to automate proof-writing, making the
process less tedious. These theorem provers are all variations of Martin-Löf’s intuitionistic type theory
(MLTT), which acts as both a logical theory and a programming language due to a correspondence
between proofs and programs.

In principle, this correspondence allows metaprograms to be expressed inside the theory itself. However,
incorporating the capacity to write arbitrary metaprograms compromises the theorem prover’s logical
consistency. It is much easier to write practical metaprograms in a metalanguage, distinct from the type
theory. However, this prevents the theorem prover from reasoning about metaprograms.

However, this does not mean metaprogramming cannot be performed in the theory at all. In fact, Gödel’s
proof of the incompleteness theorems demonstrates that any su�iciently expressive theory is capable of
what appears to be a limited form of metaprogramming. In this project, we identify the metaprogram-
ming primitives that can be safely added to MLTT, justifying them via an interpretation based on work
surrounding the incompleteness theorems, collectively known as provability.

A keymechanism inmetaprogramming is the ability to evaluate code, allowing the output of themetapro-
grams to actually be used. Unfortunately, evaluation is inconsistent with the provability interpretation,
forcing us to heavily restrict the primitives. We were able to incorporate only the ability to express and
reason about metaprograms into MLTT, but not to use them. Moreover, this reasoning ability is stilted
and impractical due to limitations imposed in order to remain sound with respect to the provability in-
terpretation. Ultimately, provability and metaprogramming are incompatible, despite their similarities.

Acknowledgements

This project would not have been possible without the help of some people. I would like to take this
opportunity to thank them.

First and foremost, I would like to thank my parents for having financially and emotionally supported me
throughout my degree and in particular while working on this project. You were always eager to listen
to my myriad ups & downs in life, and I will be forever grateful for that.

I am also indebted to my supervisor Nick. From the start, you have always encouraged me to be confident
in pursuing my own interests in this project. At the same time, you ensured that I was on track to
completing the project instead of going on a wild goose chase.

Alessandra, thank you for being my personal tutor and for introducing me to logic in my first year, which
has become my primary interest since, culminating in this project.

Contents
1 Introduction 4

1.1 Outline of the Report . 5

1.2 Contributions . 5

2 Gödel’s Incompleteness Theorems 6

2.1 First-order Logic . 6

2.1.1 The Syntax of First-order Logic . 6

2.1.2 Natural Deduction . 8

2.1.3 Propositional Logic . 9

2.2 Metaprogramming in the Theory of Arithmetic PA . 10

2.2.1 The Axioms of PA . 10

2.2.2 Encoding Formulas as Numbers . 11

2.2.3 Representing Functions & Relations in PA . 12

2.3 Gödel’s Incompleteness Theorems . 14

3 The Curry-Howard Correspondence 17

3.1 The BHK Interpretation . 17

3.2 Lambda Calculus . 18

3.3 The Correspondence For � . 19

3.4 Extending The Correspondence to Other Connectives of IPL 20

4 Martin-Löf’s Intuitionistic Type Theory 22

4.1 Type Universes . 22

4.2 The Judgements of MLTT . 23

4.2.1 Well-formedness of Contexts . 23

4.2.2 Definitional Equality . 23

4.3 Inductive Types . 24

4.3.1 The Type of Natural Numbers . 24

4.3.2 Recasting Some Propositional Connectives as Inductive Types 25

4.3.3 The Identity Type . 26

4.4 �antifiers as Dependent Type Formers . 27

4.5 Incompleteness, Revisited . 28

4.5.1 Pa�ern Matching Definitions . 29

4.5.2 Representing Recursive Functions & Relations . 29

4.5.3 The Incompleteness of MLTT . 35

5 Modal Logics for Provability & Metaprogramming 37

5.1 Axiomatic Deduction Systems for Modal Logic . 37

2

5.2 Provability Modal Logic . 39

5.3 Modal Type Systems for Staged Metaprogramming . 40

5.3.1 Staged Metaprogramming . 40

5.3.2 The Modal Analysis of Davies & Pfenning . 40

5.3.3 Fitch-Style Natural Deduction for Modal Logic . 42

5.4 The Incompatibility Between Provability and Metaprogramming 44

6 The Provability Semantics of Metaprogramming in Martin-Löf’s Type Theory 46

6.1 Staging Levels . 46

6.1.1 Simple Types . 46

6.1.2 Dependent Types . 48

6.2 Provability Semantics . 49

6.2.1 A First A�empt . 49

6.2.2 Splice Environments . 50

6.2.3 The Elaboration Procedure . 51

6.2.4 A Simple Example . 53

6.3 Type Soundness of MLTTlvl . 54

6.3.1 Computation and Congruence Rules of � . 54

6.3.2 Progress & Preservation . 55

7 Evaluation 57

7.1 Incompleteness of MLTT . 57

7.2 MLTTlvl . 57

7.2.1 The Provability Semantics . 57

7.2.2 Expressivity of MLTTlvl . 58

7.3 Ethical Considerations . 58

8 Conclusion 59

8.1 Summary . 59

8.2 Future Work . 59

A Lemmas For Establishing The Representability of Recursive Functions 61

1.1 Proof of Lemma 4.21 . 61

1.2 Proof of Lemma 4.22 . 62

B MLTTlvl 63

2.1 Proof of Theorem 6.4 . 63

2.2 Proofs for Lemma 6.7 . 63

2.3 Proof of Theorem 6.15 (Preservation) . 65

2.4 Proof of Theorem 6.17 (Progress) . 65

References 67

3

1 ` Introduction
Who watches the Watchmen?

– fromWatchmen by Alan Moore & Dave Gibbons

Interactive theorem provers such as Lean [1], Agda [2] and Coq [3] are computer systems that aid in
the development of mathematical proofs by checking their correctness. In order for the proofs to be
amenable for mechanical checking, they must be wri�en in the formal language of a logical theory. All
three aforementioned theorem provers are based on variants of intuitionistic type theory, first described
and formulated by Martin-Löf [4]. Dependent type theory harnesses a well-known correspondence [5]
between proofs and functional programs, such that the type of the program corresponds to the theorem
being proven. With this computational interpretation, the line between proof and functional program
becomes blurry1, which means theorem provers can also act as functional programming languages.

The requirement to write proofs in a formal languagemakes proof-writing a pedantic and tedious process,
and o�en makes the proofs themselves less readable. When working informally, mathematicians o�en
assume that certain sections of their proof such as routine algebra and calculations may be ’le� to the
reader’, which also serves to improve clarity as more emphasis is placed on the novel sections of the proof.
This is no longer possible if the theorem proving system requires every part of the proof to be explicitly
wri�en out. Because of this, muchwork has gone into automating these tedious parts of the proof-writing
process by developing metaprograms known as tactics [6] that automatically construct proofs, possibly
searching for previously established lemmas and definitions. In general, metaprogramsmanipulate proofs
at the syntactic level, di�ering from regular programs which manipulate proofs by their value.

For theorem provers, metaprograms are usually wri�en in a metatheory, distinct from the object theory
in which the proofs are wri�en. In programming language research, this is described as heterogenous
metaprogramming [7]. This distinction between metatheory and object theory is made because for theo-
rem provers, the object theory has to be logically consistent in order for the proofs to be reliable. However,
this restricts the computational capabilities of the object theory, in particular with respect to the expres-
sion of metaprograms. If we are only concerned with writing metaprograms, then this responsibility is
be�er handled by the metatheory which does not have to be logically consistent.

However, if we also intend to prove properties about metaprograms, then the metatheory must also be
logically consistent and imbuedwith theorem proving capabilities. Following the heterogenous approach,
this suggests we need a metametatheory, for which we need a metametametatheory, and so on ad in-
finitum. Therefore, it seems that the only feasible way forward is to reject heterogeneity and embrace
homogeneity: write metaprograms in the object theory, allowing their properties to be proven also from
within the object language. For intuitionistic type theory, this is a sensible proposition as it is both a
logical theory and a programming language.

Metaprogramming in type theory is an ongoing research area which in the author’s opinion, is still in its
infancy. In particular, much of the research has focused on establishing computationally sound principles
of metaprogramming, without much regard for the consistency of the type theory. In this project, we
move in the other direction to examine how we can integrate metaprogramming into intuitionistic type
theory in a logically sound way.

The key observation, as made by Gödel in his proofs of the much celebrated incompleteness theorems, is
that any su�iciently expressive logical theory is already capable of some metatheoretic reasoning about
itself. This line of work surrounding the incompleteness theorems is called provability, and is traditionally
kept separate from metaprogramming. However, in adapting Gödel’s work to intuitionistic type theory,
we will see that provability amounts to a form of homogenous metaprogramming, albeit an impractical
one. The main aim of this project is therefore to incorporate metaprogramming primitives into intuition-
istic type theory, providing a more practical interface to access the provability mechanisms. Viewed from
a di�erent direction, we can also see this as using provability to justify the addition of metaprogramming

1We will use one term or the other depending on context, but it is ideal to always have both in mind.

4

primitives to intuitionistic type theory.

1.1 Outline of the Report

Chapter 2 briefly reviews classical first-order logic, providing su�icient background for us to explore
Gödel’s incompleteness theorems. A key notion introduced in this chapter is the code of a formal state-
ment/proof, which is an object encoding the statement/proof’s syntax.

In Chapter 3, we begin to make our way towards intuitionistic type theory, detailing the correspondence
between proofs and functional programs. Chapter 4 takes these ideas further by introducingMartin-Löf’s
intuitionistic type theory, followed by an adaptation of the incompleteness theorems to intuitionistic type
theory. In doing so, it becomes clear that Gödel’s proofs of incompleteness is an exercise in metaprogram-
ming.

While the previous chapters have focused entirely on the incompleteness theorems, Chapter 5 intro-
duces the notion of modal logics. We re-examine the Gödelian notion of metaprogramming under this
framework, but also use it to survey the computational notion of metaprogramming found in the litera-
ture. With the aid of the unifying framework, we discover an incompatibility between the Gödelian and
computational approach.

Our work culminates in Chapter 6, which details an extension of Martin-Löf’s type theory with some
metaprogramming primitives. We justify this new theory by establishing that these primitives can be
translated to the Gödelian mechanisms that already exist in Martin-Löf’s type theory.

Finally, Chapter 7 evaluates the work in this report by examining the sort of metaprograms that our new
theory can express. Chapter 8 summarises the report and provides a survey of related work, as well as
some ideas on how to extend the work in this report.

1.2 Contributions

In this report, we make the following contributions:

1. A detailed exploration of the incompleteness theorems in Martin-Löf’s type theory (Section 4.5).
To the author’s knowledge, no such detailed exploration exists yet in the literature.

2. Summarised the developments in Fitch-style modal lambda calculus and natural deduction (Sub-
section 5.3.3), providing a metaprogramming intuition to these systems.

3. Compared and contrasted provability against themetaprogramming under the framework ofmodal
logic, discovering that the modal logics representing the two concepts are incompatible (Section
5.4).

4. Established a sound interpretation from Fitch-style modal lambda calculus for the Kmodality into
the simply-typed level-annotated lambda calculus for metaprogramming (Section 6.1).

5. Extended this level-annotated lambda calculus to Martin-Löf’s type theory, equipping it with a
modal type and the metaprogramming primitives of quotes and splices. We Sketch a provability
semantics for the theory, justifying informally the logical viability of the theory (Section 6.2).

6. Based on the provability semantics, we identified sound computation rules that the theory should
have. Based on our computation rules, we proved the type soundness (progress & preservation) of
level-annotated Martin-Löf’s type theory (Section 6.3).

5

2 ` Gödel’s Incompleteness Theorems
Deep in the human unconscious is a pervasive need for a
logical universe that makes sense, But the real universe is
always one step beyond logic.

–from The Sayings of Muad’Dib by the Princess Irulan

A minimum requirement in mathematical reasoning is consistency: one should not be able to prove
both a statement and the statement’s negation. In the 1920s, Hilbert put forth a programme [8] towards
securing the consistency of many new principles of mathematics that dealt with infinite structures, which
had been criticized by some mathematicians for its unjustified treatment of infinite structures as objects
in and of themselves rather than as limits of ongoing processes.

In response to these criticisms, Hilbert proposed formalisations of these principles of infinity. With a
formalisation, these principles become purely manipulations of finite structures - statements and proofs
in some formal language. The consistency of these formalisations are then to be proven using only princi-
ples of arithmetic: statements and derivations of these formal theories are to be encoded as numbers, so
that they may be reasoned about via arithmetical principles. Thus, we can make arithmetic statements
about the formal statements in these formalisations, i.e. meta-statements. Arithmetic is given such an
elevated status because it deals with natural numbers - the quintessential finite structure. In a very loose
sense, Hilbert had proposed a system of heterogenous metaprogramming, where arithmetic served as
metalanguage while the formalisations served as object languages.

However, Hilbert’s programme was later refuted by Gödel [9], who applied ideas from the programme
to a formalisation of arithmetic itself - i.e. homogenous metaprogramming. However, instead of using
arithmetic to prove the consistency of arithmetic, he demonstrated that arithmetic cannot even estab-
lish its own consistency, let alone the consistency of stronger forms of reasoning which must subsume
arithmetic. This is Gödel’s second incompleteness theorem.

In order to motivate our exploration of homogenous metaprogramming, we first examine the incomplete-
ness theorems in their original se�ing.

2.1 First-order Logic

The formal theory of arithmetic that we are interested in is Peano’s theory of arithmetic, or PA for short.
PA is a theory defined under the framework of first-order logic (FOL), which defines a formal language
for the expression of terms and formulas. Terms are meant to denote objects, while formulas denote
statements about these objects. In the case of PA, the terms are intended to denote natural numbers.

2.1.1 The Syntax of First-order Logic

Terms & formulas are strings of symbols built up from a selection of logical and non-logical symbols.
While the logical symbols stay fixed, the non-logical symbols are allowed to vary, allowing the formation
of di�erent theories. For arithmetic, the non-logical symbols are +,×, B, I, indicating addition, multiplica-
tion, the successor function, and zero respectively.

Definition 2.1 (The Symbols Of FOL)
The logical symbols consist of

1. Parenthesis (and)

6

2. Variables G1, G2, G3, . . .

3. The equality relation =

4. The propositional connectives >,⊥,¬,∧,∨,�

5. �antifiers ∀ and ∃

while there are two kinds of non-logical symbols:

1. Function symbols 51, 52, 53, . . . each associated with an arity ar(58)

2. Relation symbols '1, '2, '3, . . . also associated with arities ar('8)

We say 0/= to mean that the function/relation symbol 0 has arity =.

The non-logical symbols of PA consist of only function symbols +/2,×/2, B/1, I/0, which means that the
only relation we have is equality. Notice that the constant I is expressed as a function with zero arity.

Not all strings composed of these symbols may be considered a term or formula. We only want terms &
formulas that make sense relative to the intended reading of the symbols.

Definition 2.2 (FOL Terms & Formulas)
The strings that we may consider terms/formulas are defined inductively by a grammar. Below are
the grammars defining terms and formulas respectively, with their intended reading to the right of
each rule.
T8 F G Variable

| 58 (T1, . . . ,Tar(58)) Function
A,B F '8 (T1, . . . ,Tar('8)) '8 holds of T1, . . . Tar('8)

| T1 = T2 T1 equals T2
| > True
| ⊥ False
| (¬A) not A
| (A ∧ B) A and B
| (A ∨ B) A or B
| (A � B) A implies B
| (∀G . A) For all G , A holds
| (∃G . A) There exists some G for which A holds

The formula % is atomic i� % ≡ '(C1, . . . , C:), % ≡ C1 = C2 or % ≡⊥.
For a term of the form ∀G . A or ∃G . A, we call ∀ or ∃ its binder, and G its binding variable.

We will adopt a right associative convention to omi�ing parenthesis, with a precedence ordering of
∀, ∃,¬,∧,∨,� from highest to lowest. For example, ∀G . � ∧ � � � is to be read as (((∀G . �) ∧ �) � �),
and a repeated binary connective such as � � � � � is to be read as ((� � �) � �).
The variables are intended for use together with the quantifiers, allowing the formula being quantified to
depend on the variable. For example, the formula ∀G .'(G) reads "for all x, '(G) holds". However, variables
can appear in a formula without being quantified at all. To deal with this, we introduce the notion of free
& bound variables.

Definition 2.3 (Free & Bound Variables)
1. An occurence of a variable in a formula is free i� it does not occur inside a quantified subformula

7

which binds that variable. Otherwise, it is bound. Note that a variable may both occur free and
bound at di�erent places within a formula.

2. We write % (G) to mean that % is a formula with G possibly occuring free.

3. % is a sentence i� no variables occur free in % .

When variables occur free in a formula or term, we may be inclined to replace the free occurences of
the variables with some other terms - in some sense this denotes applying a general statement to some
particular objects, as denoted by the substituted terms. This operation is called substitution.

Definition 2.4 (Simultaneous Substitution)
We write % [C1/G1, . . . , C=/G=] to represent the result of substituting each term C8 for free occurences
of G8 in the formula % . Similarly, we may write C [C1/G1, . . . C=/G=] for substitution in the term C .
Substitution is defined inductively on the structure of terms/formulas.

G [C1/G1, . . . , C=/G=] =⇒ if G = G8 then C8 else G
5 (T1, . . . ,Tar(5)) [C1/G1, . . . , C=/G=] =⇒ 5 (T1 [C1/G1, . . . , C=/G=], . . . ,Tar(5) [C1/G1, . . . , C=/G=])
'(T1, . . . ,Tar(')) [C1/G1, . . . , C=/G=] =⇒ '(T1 [C1/G1, . . . , C=/G=], . . . ,Tar(') [C1/G1, . . . , C=/G=])

(T1 = T2) [C1/G1, . . . , C=/G=] =⇒ T1 [C1/G1, . . . , C=/G=] = T2 [C1/G1, . . . , C=/G=]
>[C1/G1, . . . , C=/G=] =⇒ >
⊥ [C1/G1, . . . , C=/G=] =⇒ ⊥

(¬A)[C1/G1, . . . , C=/G=] =⇒ ¬A[C1/G1, . . . , C=/G=]
(A ∧ B)[C1/G1, . . . , C=/G=] =⇒ A[C1/G1, . . . , C=/G=] ∧ B[C1/G1, . . . , C=/G=]
(A ∨ B)[C1/G1, . . . , C=/G=] =⇒ A[C1/G1, . . . , C=/G=] ∨ B[C1/G1, . . . , C=/G=]
(A � B)[C1/G1, . . . , C=/G=] =⇒ A[C1/G1, . . . , C=/G=] � B[C1/G1, . . . , C=/G=]
(∀G . A)[C1/G1, . . . , C=/G=] =⇒ if G = G8

then ∀G . A[C1/G1, . . . , C8−1/G8−1, C8+1/G8+1, . . . , C=/G=]
else ∀G . A[C1/G1, . . . , C=/G=]

(∃G . A)[C1/G1, . . . , C=/G=] =⇒ if G = G8
then ∃G . A[C1/G1, . . . , C8−1/G8−1, C8+1/G8+1, . . . , C=/G=]
else ∃G . A[C1/G1, . . . , C=/G=]

There is some subtlety to substitution. In general, a simultaneous substitution % [C1/G1, . . . , C=/G=] will
yield di�erent results than the iterated single substitution % [C1/G1] . . . [C=/G=]. It is also possible that a
term containing G is substituted into a location where G is bound by a quantifier. This situation is called
variable capture, and is undesirable because now the substituted term denotes a range of objects. To deal
with this, we adopt Barendregt’s convention [10] of assuming that free and bound variables are always
di�erent and the bound variable is re-labelled whenever a variable capture is about to happen due to a
substitution.

2.1.2 Natural Deduction

Traditionally, the study of logic is concerned with modelling how we deduce the truth of certain state-
ments from others. In first-order logic, this is represented formally as a system of formal proofs taking
on the shape of formula trees, originally introduced by Gentzen [11, 12]. We call such formal proofs
derivations, and reserve the word proof for talking about informal proofs. The branches of a derivation
are formed by applying an inference rule, which accept as premise a fixed number of formulas satisfying
a certain syntactic pa�ern and produces a new formula as conclusion. The inference rules are modelled
a�er natural pa�erns of reasoning that a mathematician might employ while writing informal proofs.
For example, with the premise � ∧ �, we have two inference rules that conclude � and � respectively,
since � ∧ � denotes "� and �". Because of this, the system is called natural deduction.

8

Definition 2.5 (Natural Deduction For First-Order Logic (N-FOL))
The inference rules are presented with premises above the line, and the conclusion below. Because
we want to perform hypothetical reasoning by assuming certain formulas to be true, we carry
around a list of such assumptions. Some rules also manipulate this list. In the following rules,
Γ and Δ are placeholders for assumption lists, � and � for arbitrary formulas, and B and C for terms.

(Ass)
Γ, �,Δ ` �

Γ, � ` � (� �)
Γ ` � � �

Γ ` � � � Γ ` � (� �)
Γ ` �

Γ ` � Γ ` � (∧�)
Γ ` � ∧ �

Γ ` � ∧ � (∧�1)Γ ` �
Γ ` � ∧ � (∧�2)Γ ` �

Γ ` � (∨�1)Γ ` � ∨ �

Γ ` � (∨�2)Γ ` � ∨ �

Γ ` � ∨ � Γ, � ` � Γ, � ` � (∨�)
Γ ` �

Γ, � `⊥ (¬�)
Γ ` ¬�

Γ ` ¬� Γ ` � (¬�)
Γ `⊥

Γ `⊥ (⊥ �)
Γ ` �

Γ,¬� `⊥ (%�)
Γ ` �

(>�)
Γ ` >

Γ ` % [~/G]
(∀�)

Γ ` ∀G . % (G)
Γ ` ∀G . % (G) (∀�)
Γ ` % [C/G]

Γ ` % [C/G] (∃�)
Γ ` ∃G . % (G)

Γ ` ∃G . % (G) Γ, % [~/G] ` �
(∃�)

Γ ` �
(refl)

Γ ` C = C
Γ ` B = C Γ ` % [B/G]

(subst)
Γ ` % [C/G]

In the last 6 rules, B, C must denote terms whose variables do not occur bound in % to avoid variable
capture when substituting, and the variable ~ must not occur free in Γ or �.

1. In general, we want to determine when a formula follows from some collection of assumptions,
which may be infinite. However, all derivations only use finitely many assumptions anyway,
since derivations are finite structures. Therefore, we say that� is derivable from the assumptions

 i� there is a derivation ending in Γ ` � where Γ contains only formulas from
. To be concise,
we overload the notation and simply write
 ` � when this is the case.

2.
 is consistent i�
 0⊥. In other words, there is no sentence� such that both
 ` � and
 ` ¬�
hold.

2.1.3 Propositional Logic

When we are purely concerned with the logical composition of statements, and do not care to reason
about objects, then a simpler system will do where rather than having function and relation symbols as
the smallest unit of syntax, we simply have atomic formulas. This formal system is called propositional
logic (PL). While propositional logic has no immediate bearing on our discussion of the incompleteness
theorems, it is instrumental for the rest of this report.

Definition 2.6 (PL Syntax)
The logical symbols of PL are the same as for FOL minus quantifiers and equality:

1. Connectives ⊥,¬,∧,∨,�

2. Parentheses (and)

The non-logical symbols consist of propositional atoms ?1, ?2, ?3,

The formulas of PL are generated by the following grammar:

9

A,B F ?8 Atom
| ⊥ False
| ¬A not A
| (A ∧ B) A and B
| (A ∨ B) A or B
| (A � B) A implies B

The natural deduction system for PL is the same as for FOL, removing the rules for the connectives that
are no longer available.

Definition 2.7 (Natural Deduction For Propositional Logic (N-PL))

(>�)
Γ ` > (Ass)

Γ, �,Δ ` �
Γ, � ` � (� �)
Γ ` � � �

Γ ` � � � Γ ` � (� �)
Γ ` �

Γ ` � Γ ` � (∧�)
Γ ` � ∧ �

Γ ` � ∧ � (∧�1)Γ ` �
Γ ` � ∧ � (∧�2)Γ ` �

Γ ` � (∨�1)Γ ` � ∨ �

Γ ` � (∨�2)Γ ` � ∨ �

Γ ` � ∨ � Γ, � ` � Γ, � ` � (∨�)
Γ ` �

Γ, � `⊥ (¬�)
Γ ` ¬�

Γ ` ¬� Γ ` � (¬�)
Γ `⊥

Γ `⊥ (⊥ �)
Γ ` �

Γ,¬� `⊥ (%�)
Γ ` �

2.2 Metaprogramming in the Theory of Arithmetic PA

2.2.1 The Axioms of PA

While we have described the framework of first-order logic, we have yet to describe what constitutes
a theory, and in particular PA. PA is given in terms of axioms, a minimal collection of sentences that
characterize the objects in the theory.

Definition 2.8 (Axioms of PA [13])
In the following sentences, we will use infix notation for the function symbols +/2 and ×/2, in line
with informal use and to avoid a proliferation of parentheses. For the same reason, we use z and C ′

to refer to I () and B (C) respectively. Finally, we will write C1 ≠ C2 as an abbreviation for ¬C1 = C2, and
� ↔ � for (� � �) ∧ (� � �). The axioms of PA consist of the following 8 sentences

1. ∀G . ∀~. (G ′ = ~ ′ � G = ~)

2. ∀G . G ′ ≠ z

3. ∀G . (G = z ∨ ∃~. G = ~ ′)

4. ∀G . G + z = G

5. ∀G . ∀~. G + ~ ′ = (G + ~) ′

6. ∀G . G × z = z

7. ∀G . ∀~. G × ~ ′ = (G × ~) + G

8. ∀G . ∀~. G < ~ ↔ ∃:. : ′ + G = ~

10

along with a sentence of the form

∀~1. . . .∀~= . ((�[z/G] ∧ ∀G . (�(G) � �[G ′/G]))) � ∀G . �(G))

for each formula�(G) with variables G,~1 . . . ~= possibly occuring free. Notice that the last sentence
is the induction principle for natural numbers.

Now, denoting the above collection of axioms as PA0, the theory PA is obtained as the collection of all
sentences that can be proven from PA0. In other words, it is the closure of the axioms under `.

PA = {� | PA0 ` �}

This suggests a general definition of theory in first-order logic.

Definition 2.9 (First-order Theory)
A set of FOL sentences
 is a theory i� it contains every sentence it proves, i.e.
 = {� |
 ` �}.

2.2.2 Encoding Formulas as Numbers

Following Hilbert’s programme, Gödel encoded the formulas and derivations of PA as numbers - the
objects of PA. We refer to the result of encoding a formula/derivation as its Gödel code or just code.

First, recall that other than the variables, we only have finitely many symbols in the language of first-
order logic and PA. Therefore, we can simply assign the first few natural numbers as an encoding for
these symbols, and use the remaining natural numbers to encode the variables. For example,

∀ ∃ ∧ ∨ ¬ � ⊥ = + × I B G1 . . . G8 . . .

0 1 2 3 4 5 6 7 8 9 10 11 12 . . . 11 + 8 . . .

The exact assignment is not important, however it is important that the encoding assignment be injective:
two distinct objects must have distinct codes. An injective encoding ensures no information is lost, so
that given the code of some object, we can discern the unique object having that code.

Now, terms & formulas are strings composed of such symbols, so we need a way of turning strings of
symbols into a number. We can already transform each symbol into its code, so this becomes the problem
of compacting a strings of numbers into a single number. One way of doing this is to take the power of
some prime factor to each number in the string - the product of these factor powers is the code of the
string.

Definition 2.10 (Encoding Strings [14])
Let ⟪01, . . . , 0=⟫ denote the encoding of the string 01 . . . 0=

⟪01, . . . , 0=⟫ , ?
01+1
1 · . . . · ?0=+1=

where ?8 is the 8th prime number in ascending order. We add 1 to each 08 so that we can distinguish
sequences containing zero, for example between ⟪2, 5, 6⟫ and ⟪2, 5, 0, 6, 0, 0⟫.

By the prime factorisation theorem, any two distinct sequences are encoded di�erently since they are
encoded as two di�erent factorisations. Let us denote the encoding of a term C and formula � by this
method as #C# and #�#.

11

For the natural deduction derivation trees, an encoding has to follow the tree structure of the derivation.

Definition 2.11 (Encoding Trees [14])
A tree can be encoded as

⟪:, X1, . . . , X: , ;⟫

where : is the number of subtrees of this tree, X1 . . . X: are the codes of the subtrees, and ; is a label
at the root of the tree.

In the context of derivations, the label will be ⟪#Γ ` �#,<⟫, consisting of the code of the conclusion Γ ` �
along with the code< of the inference rule being applied. If Γ = �1 . . . �= , then one option for the code
#Γ ` �# is ⟪#�#, =, #�1

#, . . . , #�=
#⟫. As for the inference rule’s code, since there are only finitely many

inference rules we can simply assign a number to each rule, as we did with the symbols.

Note that well-formed formulas also have a tree structure, so we could have defined an encoding in
this way for well-formed formulas as well. Such an encoding will only be well-defined for well-formed
formulas, but this is not a real problem as we are only really concerned with well-formed formulas.

Finally, in PA any natural number = has an obvious canonical representation

= ≡ B (B (. . . B (I) . . .))︸ ︷︷ ︸
= times

so we may represent a formula � in the language of PA as #�#, which we shall abbreviate as p�q.

2.2.3 Representing Functions & Relations in PA

The next phase in Gödel’s incompleteness proof is to represent functions and relations on formulas and
derivations inside PA. Of particular interest is the relation prfPA (X,�) which holds i� X is a derivation
of formula � with PA as the set of assumptions, i.e. PA ` �. This will allow PA to reason about the
derivability of its own formulas. Of course, PA can really only represent numbers, and functions/relations
on numbers. Therefore are two steps to this phase:

1. Define what it means for PA to represent functions/relations on numbers.

2. Translate functions and relations on formulas/derivations as functions and relations on the encod-
ing of the functions and relations.

For the first step, PA does not provide the means to define new functions or relations, so we will have to
represent them by using formulas.

Definition 2.12 (Representable Functions & Relations [14])
1. A function 5 (G1, . . . , G:) is said to be represented by the PA-formula 5 (G1, . . . , G: , ~) i� for every

natural number =1, . . . , =: ,<

5 (=1, . . . =: ,<) implies PA ` ∀~. (5 (=1, . . . , =: , ~) ↔ ~ =<)

2. A relation '(G1, . . . , G:) is represented by '(G1, . . . , G:) i� for every =1, . . . , =:

if '(=1, . . . , =:) holds then PA ` '(=1, . . . , =:)
if '(=1, . . . , =:) does not hold then PA ` ¬'(=1, . . . , =:)

12

As it turns out however, not all functions/relations are representable in PA; only the computable ones are
[14]. Because we are dealing with functions on natural numbers, the most fi�ing model of computation
to adopt is that of the recursive functions.

Definition 2.13 (Recursive Functions & Relations [14])
1. First, the partial recursive functions are defined inductively, noting that whenever we define a

partial function 5 in terms of other partial functions 61, . . . , 6: , 5 is only well-defined on some
input value when 61, . . . , 6: are themselves defined on their given input values. Otherwise, 5 is
undefined.

(a) The function zero(G) , 0 is partial recursive.
(b) The function succ(G) , G + 1 is partial recursive.
(c) For each natural number = and 1 ≤ 8 ≤ =, the function prni (G1, . . . G=) , G8 is partial

recursive.

(d) If 5 (G1, . . . , G:) and61 (G1, . . . , G=) . . . 6: (G1, . . . , G=) are partial recursive, then so is their com-
position comp[5 , 61, . . . , 6:] (G1, . . . , G=) , 5 (61 (G1, . . . , G=), . . . , 6: (G1, . . . , G=)).

(e) If 5 (G1, . . . G=) and 6(G1, . . . , G=+2) are partial recursive, then the recursively defined partial
function

rec[5 , 6] (G0, . . . , G=, 0) , 5 (G0, . . . , G=)
rec[5 , 6] (G0, . . . , G=, ~ + 1) , 6(G0, . . . , G=, ~, rec[5 , 6] (G0, . . . , G=, ~))

is also partial recursive.

(f) If 5 (G0, . . . G=, ~) is partial recursive, then so is the unbounded search function

` [5] (G0, . . . , G=) = ~ ⇐⇒ for all 8 < ~, 5 (G0, . . . , G=, 8) > 0 and 5 (G0, . . . , G=, ~) = 0

2. The primitive recursive functions are those constructed using only 1.a) - 1.e) above. Because only
1.f) introduces partiality, the primitive recursive functions are total.

3. The total recursive functions, or recursive functions for short, are the partial recursive functions
that are defined for all inputs.

4. A relation '(G0, . . . , G=) is recursively decidable i� its characteristic function

j' (G0, . . . , G=) =
{
1 if '(G0, . . . , G=) holds
0 otherwise

is a recursive function.

This means that any function we want to represent in PA has to first be shown to be recursive. However,
the constructions are long and tedious, so we refer to chapter 3 of [14] for the particulars of the construc-
tion. In particular, we borrow the result that the following functions are primitive recursive and therefore
recursive, since they are directly used in the incompleteness proof.

Lemma 2.14
The following function and relation are primitive recursive/recursively decidable, and therefore rep-
resentable [14].

• The relation prfPA (3, 0), which holds i� 3 codes a derivation, with the axioms of PA as as-
sumptions, of the formula coded by 0. Intuitively, this is computable because one simply has
to check each application of an inference rule follows the proper shape. For (Ass), one has to
check whether the conclusion is an axiom of PA, but this is simply checking whether it is one

13

of the first 8 axioms or whether it fits the shape of the induction principle.

• The function diag(0) which computes the code of �[p�(G)q /G] if 0 codes the formula �(G)
with exactly one free variable G . This is also intuitively computable as one can simply iterate
over the symbols and check whether each is a free variable, and if so replace it by p�(G)q.

2.3 Gödel’s Incompleteness Theorems

The first incompleteness theorem states that in PA, there are certain sentences that cannot be derived
to be true nor false. That is to say, the theory is incomplete. The second incompleteness theorem, which
follows as a corollary of the first, states that the PA sentence ¬∃G . prfPA (G, p⊥q) expressing PA’s own
consistency also cannot be derived to be true nor false. For the remainder of this section, we drop the
subscript PA from prf, since it is obvious that we are talking about PA.

Definition 2.15 (Complete Theory [14])
The theory
 is complete i� for every sentence � in the language of
, either
 ` � or
 ` ¬�.
Otherwise, it is incomplete.

A sentence � for which
 0 � and
 0 ¬� is said to be independent of
.

Gödel’s second theorem served a massive blow to Hilbert’s programme as it means arithmetic is not even
able to prove its own consistency. We shall prove the first incompleteness theorem and then sketch a
proof for the second theorem, as a complete proof will be quite long & tedious.

The first proof proceeds by explicitly constructing the sentence � , which has the property

PA ` � ↔ ¬Prov[p�q /G] (2.1)

where Prov(G) is abbreviation for ∃~. prf (~, G). More concisely, we say� is the fixed-point of Prov(G). To
obtain a neater proof, we describe the construction of fixed-points in general.

Lemma 2.16 (Fixed-point Property)
For any formula �(G) with only G possibly occuring free, there is a sentence � such that

PA ` � ↔ � [p�q /G] .

Proof. �may be defined using diag(G). For details see [14] or Chapter 4, where we prove the same
lemma but forMLTT. a

A contradiction should be apparent from an informal gloss of the fixed-point property (2.1):

"� holds if and only if � is not provable."

We leverage this towards a proof by contradiction of � ’s independence, where assuming either PA ` �

or PA ` ¬� leads to a contradiction, precisely because of the fixed-point property.

Now, the incompleteness theorem has to assume the consistency of PA, since otherwise an inconsistent
theory can prove anything via the (⊥E) rule of natural deduction. Unfortunately, the assumption of
consistency is not quite strong enough to prove the contradiction, so we have to assume the somewhat

14

awkward but stronger condition of l-consistency1 It is possible to obtain a variation of the theorem [15]
which only assumes consistency, but this has to be down with a more awkward definition of Prov(G).

Definition 2.17 (8-consistency [14])
PA is l-consistent i� for any formula�(G) with only G possibly occuring free, if PA ` ¬�[</G] for
all natural numbers<, then PA 0 ∃G . �(G).

l-consistency easily implies consistency because if PA is inconsistent, then it can derive anything - in
particular,�[</G] and ¬�[</G] for any�(G) and<. The former derivations allow us to derive ∃G .�(G),
which in combination with the la�er derivationsmeans PA isl-inconsistent. Armedwith this knowledge,
we are now ready to tackle the first incompleteness theorem.

Theorem 2.18 (First Incompleteness Theorem [14])
If PA is l-consistent, then � is independent of PA, where � is the fixed-point of Prov(G).

Proof. [14]
(PA 0 �) Since PA is l-consistent, it is consistent. Now suppose for a contradiction that PA ` � ,

which means there is a natural deduction proof of � coded by the number 3 . By the
representability of prf, we then have that PA ` prf (3, p�q), and so PA ` Prov(p�q).
At the same time, PA ` ¬Prov(p�q) by applying the fixed-point property to PA ` � .
Together, these imply PA is inconsistent, contradicting the fact that PA is consistent.

(PA 0 ¬�) Suppose for a contradiction that PA ` ¬� . By the fixed-point property yet again, PA `
Prov(p�q) which is just shorthand for

PA ` ∃G . prf (G, p�q). (2.2)

Since PA is consistent, we must also have PA 0 � . Because there is no derivation of
� , no number codes a derivation of � . Hence by the representability of prf, for any =,
PA ` ¬prf (=, p�q). Combining this with (2.2) shows that PA is l-inconsistent, which is a
contradiction. a

The second incompleteness theorem is obtained as a corollary of the first incompleteness theorem by
formalising the first theorem inside PA. In particular, we show that PA can derive the first half of the first
incompleteness theorem

Lemma 2.19 (Formalised First Theorem [16])

PA ` ConPA � ¬Prov(p�q)

where ConPA ≡ ¬Prov(p⊥q). As with prf, we will drop the subscript for now. A complete proof of this
formalisation is tedious and depends on the particular coding of formulas & proofs2. Fortunately, Hilbert
& Bernays [17] isolated some high-level conditions, later simplified by Löb [18] that Prov(G) must satisfy
in order to carry out a simpler proof of the formalised first theorem.

1The notation borrows from the study of ordinal numbers, where l denotes the lowest upper bound of the set of all natural
numbers {0, 1, 2, . . .}.

2Even Gödel only gave a brief sketch in his original paper [9].

15

Definition 2.20 (Hilbert-Bernays-Löb Conditions [14])
For all sentences � and �,

1. if PA ` � then PA ` Prov(p�q).

2. PA ` Prov(p� � �q) � (Prov(p�q) � Prov(p�q)).

3. PA ` Prov(p�q) � Prov(pProv(p�q)q).

Assuming these conditions to hold of our provability predicate, we can now prove the formalised first
theorem.

Proof. [14]

PA ` � � (Prov(p�q) �⊥) (2.3)

From the fixed-point property of � and the equivalence ¬� ↔ (� �⊥)
PA ` Prov(p� � (Prov(p�q) �⊥)q) (2.4)

Apply Definition 2.20.1 to (2.3)

PA ` Prov(p�q) � Prov(pProv(p�q)q) � Prov(p⊥q) (2.5)

Apply Definition 2.20.2 twice to (2.4)

PA ` Prov(p�q) � Prov(p⊥q) (2.6)

By Definition 2.20.3, the second premise in (2.5) is redundant

PA ` Con � ¬Prov(p�q) (2.7)

By contraposition of (2.6) and by definition of Con a

Now, if PA is consistent, it cannot be that PA ` Con, since we can apply the formalised first theorem to
derive ¬Prov(p�q) and this is equivalent to� by the fixed-point property. This of course contradicts the
(informal) first theorem.

On the other hand, if PA is l-consistent, then it also does not derive ¬Con. Suppose for a contradiction
that PA ` ¬Con. Unfolding definitions, this is equivalent to

PA ` ∃G . prf (G, p⊥q). (2.8)

However, since PA is consistent as implied by its l-consistency, it cannot derive ⊥. This means that for
all =, PA ` ¬prf (=, p⊥q). In combination with (2.8), this means PA is l-inconsistent, a contradiction.
bears us the second incompleteness theorem.

Theorem 2.21 (Second Incompleteness Theorem [14])
If PA is l-consistent, ConPA is independent of PA.

The most important part of this chapter is not the incompleteness theorems themselves, but rather the
development of "metaprogramming" mechanisms in PA. The incompleteness theorems simply serve to
delineate the boundaries of what we can do with these mechanisms. However, calling these mecha-
nisms "metaprogramming" is not quite appropriate, because PA is not a programming language. In the
following chapters, we adapt Gödel’s ideas to Martin-Löf’s type theory, which can serve as both a math-
ematical theory and as a programming language. In such a theory, Gödel’s ideas really can be considered
metaprogramming.

16

3 ` The Curry-Howard Correspondence
One cannot inquire into the foundations and nature of
mathematics without delving into the question of the
operations by which the mathematical activity of the
mind is conducted.

–L.E.J Brouwer

In the previous chapter, we observed how, even though we had assumed PA to be consistent, PA’s con-
sistency remained independent of PA. This suggests a gap between the notion of truth and formal prov-
ability. In this chapter, we shall examine intuitionistic logic: a mathematically inclined reformulation of
logic from first principles, in which logical truth instead corresponds to the notion of constructive proof,
an idea originating from Brouwer’s constructive approach to mathematics [19]. In constructive math-
ematics, mathematical objects exist only if they can be explicitly constructed, and this includes logical
statements whose constructions are proofs. The result is a system of logic radically di�erent from the
first-order or propositional logic of the previous chapter, which we shall henceforth collectively call "clas-
sical logic". It is weaker in the sense that classical logic validates general principles which intuitionistic
logic does not. However, intuitionistic logic is stronger in the sense that it demands more from the proof
of a statement.

Brouwer takes "construction" to mean computation, in the sense of Turing machines [20], Church’s
lambda calculus [21] or the recursive functions we investigated in the previous chapter. Because of this,
proofs in intuitionistic logic carry some inherent computational content. Of the three computational
models described however, only the lambda calculus contains programs in direct structural correspon-
dence with intuitionistic proofs [22]. This correspondence is called the Curry-Howard correspondence,
and is exactly what allows intuitionistic logic to take the role of both logical theory and programming
language.

This chapter and the next are dedicated to intuitionistic logic. In this chapter, we ease in the core ideas
of the Curry-Howard correspondence by exploring the correspondence for propositional intuitionistic
logic. This provides a system suitable for programming, but too simplistic for expressing mathematical
theorems. In the next chapter, we rectify this by extending the system to include quantifiers, the equality
relation, and common mathematical objects.

3.1 The BHK Interpretation

While Brouwer himself was not interested in a formalisation of intuitionistic logic, his contemporaries
sought a formalisation that allowed a comparison with classical logic. This lead to the semi-formal
Brouwer-Heyting-Kolmogorov interpretation [23, 24, 25] of the logical connectives.

Definition 3.1 (BHK Interpretation)
• ⊥ has no proof.

• > trivially always has a proof.

• A proof of � ∧ � constitutes a pair consisting of the proof of � and a proof of �.

• A proof of � ∨ � constitutes exactly one of either a proof of � or a proof of �, and a specification
of whether it is a proof of � or �.

• A proof of � � � is a construction that gives a proof of � given a proof of �.

17

• A proof of ¬� is a construction that gives a proof of ⊥ given a proof of �. In other words, ¬� is
shorthand for � �⊥.

The BHK interpretation is highly reminiscent of the introduction rules in the natural deduction system
N-PL from the previous chapter. Note that in N-PL, any proposition � may also be proven by assum-
ing the negation ¬� and using it to derive a contradiction. However, under the BHK interpretation this
merely refutes ¬� rather than proves �. It is therefore not a valid inference of intuitionistic logic. Hence,
a natural deduction systemN-IPL for intuitionistic propositional logic is given by omi�ing the rule proof
by contradiction rule (%�) from N-PL. One consequence of the removal is that we no longer have equiv-
alence between ¬¬� and � - the la�er implies the former but not vice versa.

Another consequence of the removal is that the law of excluded middle�∨¬�, which is provable for any
proposition � in classical logic, is no longer generally provable for intuitionistic logic. This follows from
the BHK interpretation: a proof of � ∨ ¬� must constitute either a proof of � or ¬�, and its not always
possible to give a proof of one or the other. A good example we have seen is ConPA, for PA cannot derive
ConPA or its negation. Of course PA can still derive ConPA ∨ ¬ConPA since it is formulated in classical
logic, which only serves to demonstrate the di�erence between intuitionistic and classical connectives.

3.2 Lambda Calculus

The notion of "construction" is not defined in the BHK interpretation. However, we will see that there is
very good sense in using the lambda calculus to fill the role of "construction". The lambda calculus was
originally developed by Alonzo Church in 1932 [21]. It reformulated functions as rules for obtaining out-
put from input, instead of as graphs from input values to output. In its purest form, the only construction
of the pure lambda calculus are functions, leading to a concise syntax.

Definition 3.2 (,-term [26]) M,N F G Variable
| (_G. M) Abstraction
| (M N) Application

As with the quantified formulas in FOL, given a term of the form _G. M, we call _ the binder and
G the binding variable of the term.

We will omit any unnecessary parenthesis according to a le�-associative convention for application, i.e.
"1"2"3 . . . ": is to be read as (. . . (("1"2)"3) . . . ":). Application is given a higher precedence than
abstraction, such that _G. " # reads as _G. (" #) rather than (_G. ") # .

The notion of substitution for the lambda calculus is very important because the computation of _-terms
are expressed in terms of substitutions. The definition of a free/bound occurence remains the same as in
FOL, so substitution replaces free occurences of variables in much the same way. However, it is worth
reiterating the substitution for clarity.

Definition 3.3 (Simultaneous Substitution)

G [C1/G1, . . . , C=/G=] =⇒ if G = G8 then C8 else G
(M N)["1/G1, . . . , "=/G=] =⇒ M["1/G1, . . . , "=/G=] N ["1/G1, . . . , "=/G=]
(_G. M)["1/G1, . . . , "=/G=] =⇒ if G = G8

then _G. M["1/G1, . . . , "8−1/G8−1, "8+1/G8+1, . . . , "=/G=]
else _G. M["1/G1, . . . , "=/G=]

As with FOL, we assume Barendregt’s convention to avoid variable capture.

18

Abstraction constructs a function which takes input G and returns " . When an abstraction is applied
to a term, i.e. (_G. ") # , we can evaluate the result of the function on # by substituting it for G in " .
Therefore, computation takes place by repeatedly reducing applied abstractions to substitutions. This is
expressed in terms of an inductively defined binary relation called V-reduction.

Definition 3.4 (#-reduction [26])
V-reduction takes place when an abstraction is applied to another term:

(_G. ") # {V " [# /G]

Any term of the form (_G. ") # is called a redex.

Congruence rules allow the reduction to take place at an arbitrary subterm.

" {V " ′

_G. " {V _G. " ′
" {V " ′

" # {V " ′ #

{V # ′

" # {V " # ′

The relation " {∗
V
expresses whether " can reduce to # in a finite amount of steps, and is

defined as the reflexive transitive closure of {V . The relation " =V # is the equivalence relation
expressing whether " and # reduce to some common term. It is defined as the reflexive transitive
symmetric closure of{V .

Definition 3.5 (#-normal and Neutral Terms)
A term that contains no redex is said to be in V-normal form, since it can no longer be reduced.
We give an explicit description of terms in this form. We define normal terms U coinductive with
neutral termsV , which can be thought of as an application that is stuck because it is not a redex.

V F G

| (V U)
U F V

| (_G. U)

3.3 The Correspondence For �

In the BHK interpretation, a proof of � � � is essentially a function from proofs of � to proofs of �,
although it is not specified what sort of function it should be. One option for this is to use _-terms.
They are good candidates because the structure of _-terms is in direct correspondence with the structure
of natural deduction derivations concerning only the � connective. We can see this by annotating the
derivation’s conclusion with terms, and the formulas in the context with variables.

Definition 3.6 (Simply-typed Lambda Calculus)

G : � ∈ Γ (Ax)
Γ ` G : �

Γ, G : � ` " : � (� �)
Γ ` _G. " : � � �

Γ ` " : � � � Γ ` # : � (� �)
Γ ` " # : �

From the computational perspective, this system of derivations is seen as an assignment of types to a
subset of the _ terms, with � � � serving as the type of functions from � to �. Hence, the above system
is called the simply typed lambda calculus [27].

19

Following the BHK interpretation, we seek to identify derivations of � � � with terms of the lambda
calculus. We can see that this is indeed the case: the introduction rule (�I) is associated with abstraction,
the elimination rule (�E) with application, and the (Ass) rule with variables. In other words, the syntax
of the term determines the structure of the proof. Unfortunately, with our current definition, a _-term
does not yet carry enough information to determine a unique derivation. For example, the term _G. G can
be typed in infinitely many ways by any formula of the form � � �. To fix this, we annotate the binding
variable of a _ abstraction by its expected type [27],

_G : �. " : � � �

allowing the following uniqueness properties about the derivations that correspond to a lambda term.

Theorem 3.7 (Uniqueness of Typing [22])

If Γ ` " : � and Γ ` " : �, then � = �.

Theorem 3.8 (Uniqueness of Derivation)
Any two derivation trees of Γ ` " : � are equal.

When a term uniquely determines a derivation, we say that the system is syntax directed. We will o�en
omit the binding variable annotations for brevity, whenever they can be easily inferred.

3.4 Extending The Correspondence to Other Connectives of IPL

While the lambda calculus fills in the role of proofs concerning �, it does not have the necessary struc-
ture to represent the proofs of the other connectives. We can however extend the lambda calculus with
additional programming structures that allow exactly that.

Definition 3.9 (Extended ,-term [22])
M,N F G ∈ X Variable

| _G. M Abstraction
| M N Application
| 〈〉 Unit
| 〈M,N〉 Pair
| c1 (M) Le� Projection
| c2 (M) Right Projection
| in1 (M) Le� Injection
| in2 (M) Right Injection
| case(M, G .N1, G .N2) Case Split
| expl(") Explosion

Definition 3.10 (Extended #-reduction)
In addition to the reduction rules for functions, add the following rules:

c1 (〈", # 〉) {V " c2 (〈", # 〉) {V #

20

case(in1 ("), G .#1, G .#2) {V #1 ["/G] case(in2 ("), G .#1, G .#2) {V #2 ["/G]

as well as congruence rules:

" {V " ′

〈", # 〉 {V 〈" ′, # 〉
" {V # ′

〈", # 〉 {V 〈", # ′〉
" {V " ′

c1 (") {V c1 (" ′)
" {V " ′

c2 (") {V c2 (" ′)
" {V " ′

in1 (") {V in1 (" ′)
" {V " ′

in2 (") {V in2 (" ′)
" {V " ′

case(",G.#1, G .#2) {V case(" ′, G .#1, G .#2)
#1 {V # ′

1
case(",G.#1, G .#2) {V case(",G.# ′

1, G .#2)
#2 {V # ′

2
case(",G.#1, G .#2) {V case(",G.#1, G .#

′
2)

〈", # 〉 is a pair consisting of two terms " and # , while c1 (") and c2 (") extracts the le� and right
members (respectively) of the pair " . This corresponds to conjunction. The structure that corresponds
to disjunction is the disjoint union or option. in1 (") constructs the le� option, while in2 (") constructs
the right option. case(",G.#1, G .#2) extracts the contents of a disjoint union by substituting it for x in
#1 if" is a le� option, or in #2 if" is a right option.

Notice the general pa�ern: we have syntax that denotes the construction of some structure, along with
syntax that denotes its destruction. V-reduction is always defined by destructors "cancelling out" a con-
structor. The constructors correspond to the introduction rules, while the destructors correspond to elim-
ination rules.

We now give the annotated deduction rules for the remaining connectives, noting that some additional
term formers also have to be annotated to ensure syntax-directedness.

Definition 3.11 (Extended Simply-typed Lambda Calculus)

Γ ` " : � Γ ` # : � (∧�)
Γ ` 〈", # 〉 : � ∧ �

Γ ` " : � ∧ � (∧�1)
Γ ` c1 (") : �

Γ ` " : � ∧ � (∧�2)
Γ ` c2 (") : �

Γ ` " : � (∨�1)
Γ ` in1 (")� : � ∨ �

Γ ` " : � (∨�2)
Γ ` in2 (")� : � ∨ �

Γ ` " : � ∨ � Γ, G : � ` #1 : � Γ, G : � ` #2 : � (∨�)
Γ ` case(",G.#1, G .#2) : �

Γ ` " :⊥ (⊥ �)
Γ ` expl(")� : �

The > type only has a single constructor 〈〉 with no arguments, so it has no destructor or elimination rule
since there’s no useful information to be extracted. On the other hand, the ⊥ type has no constructor,
but still requires a destructor to correspond to elimination - which we have as expl("). It is so named
since (⊥E) is commonly called the principle of explosion. Neither 〈〉 nor expl(") have V-reductions, since
there is either no destructor or constructor to cancel out.

In the next chapter, we will extend the Curry-Howard correspondence even further to cover quantifiers,
relations and the construction of arbitrary mathematical objects. This extended theory becomes suitable
for use as a foundations of mathematics, while still maintaining the computational interpretation.

21

4 ` Martin-Löf’s Intuitionistic Type Theory
It no longer seems possible to distinguish the discipline of
programming from constructive mathematics.

–Per Martin-Löf

In the previous chapter, we observed how proofs in intuitionistic propositional logic can be identified
with _-terms via the Curry-Howard correspondence. However, propositional logic is not well-suited for
mathematical reasoning. For this, we need first-order logic, or more generally the ability to reason about
objects, functions and relations using quantifiers. This is where Martin-Löf’s intuitionistic type theory
(MLTT) comes in. In MLTT, we can not only represent proofs by _-terms, but also mathematical ob-
jects such as the natural numbers and functions on these objects. Relations can be considered as types
parametrized by the inhabitants/terms of some other type(s), and these too can be construed as func-
tions on the type of types. Finally, quantifiers quantify over the inhabitants of a type, rather than some
particular domain of objects as in first-order logic.

MLTT has endured and inspired the development of theorem provers and their underlying theory. For
example, Coq, Lean & Agda are all based on some variant of MLTT. The computational nature of the
proofs and mathematical objects mean that checking proofs for correctness can be expressed as a com-
putation, specifically as the procedure of type checking, which can be carried out automatically via an
algorithm.

Once we introduce MLTT, we will show that it cannot prove its own consistency, following the same
lines of reasoning as in chapter 2. Some care will have to be taken for we can no longer take certain
classical principles for granted, such as the law of excludedmiddle (�∨¬�) or double-negation elimination
(� ↔ ¬¬�). The proofs for the incompleteness theorems involve manipulating encodings of syntax. Due
to the Curry-Howard correspondence, we may view these proofs as programs, thus demonstrating that
provability is a form of metaprogramming.

4.1 Type Universes

In order to construct relations as functions on types, we first need a type of types U to serve as the
function’s codomain, with the idea that any type � can be typed as � : U. Implicit in this idea is that
types are now also terms, since types themselves have types. Unfortunately, we cannot type U by itself
(U : U) because this leads to a paradox along the same lines as Russell’s paradox of the set of all sets
[28]. In order to maintain that a type is a term and must therefore have a type, we introduce an infinite,
cumulative hierarchy of universes U0 : U1 : . . . More formally, this is represented by the rules

Definition 4.1 (Universe Formation & Cumulativity Rules [29])

(U−F)
Γ ` U8 : U8+1

Γ ` � : U8 (U−cumul)
Γ ` � : U8+1

The universes are closed under type formers, e.g. if � : U8 and � : U9 , then � � � : U8t9 , where 8 t 9

picks out the larger number of 8 and 9 . For the work in this report, we are not going to use more than one
universe, so we will o�en just call it U when we are not defining rules of the theory.

22

4.2 The Judgements of MLTT

4.2.1 Well-formedness of Contexts

When discussing natural deduction for FOL or for the simply typed lambda calculus, we were concerned
only with defining · ` · or · ` · : ·, which we call judgements. Informally, Γ ` � is the judgement that �
follows from the assumptions in Γ. WithMLTT, we are still primarily concerned with · ` · : ·. However, as
we will see in the following sections, types are nowmore complicated and are not necessarily well-formed
just because they follow a certain syntactic structure. As a result, not all contexts Γ are well-formed either.
In particular, types may now contain terms, so in a context G : �,~ : �, the type � may refer to G . We
express the well-formedness of Γ as the judgement Γ ctx, inductively defined by the following rules. The
rules assert that each type in the context is well-formed with respect to the variables that come before.

Definition 4.2 (Well-Formedness Of Contexts [29])
Let ∗ denote the empty list.

(ctx−emp)∗ ctx
Γ ` � : U8 (ctx − var)
Γ, ~ : � ctx

Implicit in the (ctx − var) rule is the assumption that Γ ` � : U8 implies Γ ctx. Indeed, we will have to
define the typing judgement ` such that checks of Γ ctx are made in rules where they are necessary. For
example, the rule (U−F) ought to have been

Γ ctx (U−F)
Γ ` U8 : U8+1

4.2.2 Definitional Equality

Another judgement we must have is actually one that we have seen before: V-reduction. This time, we
express the reduction rules under context and typing, which means we only describe computation for
well-typed terms. Additionally, we directly define the equality notion associated with the computation,
rather than starting with a directed reduction relation and taking its equivalence closure. The judgement
Γ ` " ≡ # : �, which reads the term " of type � is definitionally equal to the term # of type � (under
the context Γ). We present here the basic rules of definitional equality, however leave the presentation of
the actual 14C0-reduction to when we discuss the types. We will also omit congruence rules, for they can
be inferred from the structure of the terms.

Definition 4.3 (Basic rules of Definitional Equality [29])
Definitional equality is an equivalence relation:

Γ ` " : � (≡ −refl)
Γ ` " ≡ " : �

Γ ` " ≡ # : � (≡ −symm)
Γ ` # ≡ " : �

Γ ` " ≡ # : � Γ ` # ≡ $: � (≡ −trans)
Γ ` " ≡ $: �

Definitionally equal-types may replace each other.

Γ ` " : � Γ ` � ≡ � : U8 (≡ −replace1)Γ ` " : �
Γ ` " ≡ # : � Γ ` � ≡ � : U8 (≡ −replace2)Γ ` " ≡ # : �

23

4.3 Inductive Types

Now, we move on to consider inductive types, where its inhabitants are generated by a combination of
constructors. We have seen examples of this in the simply typed lambda calculus with the propositional
connectives ∧, ∨, and ⊥. Here we give a more uniform treatment of these types under the framework of
inductive types. Types are defined by describing 4 types of rules:

1. Formation rules describe how to construct the type.

2. Introduction rules determine how to construct inhabitants of the type, with one rule corresponding
to each constructor.

3. Elimination rules determine how to use or "destroy" an arbitrary instance of the type. These also
come with term formers called destructors, eliminators or more suggestively, induction principles.

4. Computation rules express how the constructors and destructor interact to cancel each other out,
akin to V-reduction in the previous chapter. These are expressed as definitional equalities.

4.3.1 The Type of Natural Numbers

Let us build up our first type of mathematical objects: the natural numbers N. N is trivially well-formed
since its just a constant, so it inhabits any universe, giving us a simple formation rule. The terms of N are
also simple to introduce: following PA, we have two constructors - z and s(·).

Definition 4.4 (Formation & Introduction Rules For N [29])

Γ ctx (N�)
Γ ` N : U8

Γ ctx (N�1)Γ ` z : N
Γ ` " : N (N�2)

Γ ` s(") : N

The elimination rule of an inductive type is determined from the structure of the constructors. In general,
the eliminator derives that a predicate % (G) holds for any inhabitant G of the inductive type, assuming we
can derive that % (G) holds of the terms formed using each constructor. In other words, it is an induction
principle for the type. For N, this corresponds to the usual induction principle that we saw in chapter 2.

Definition 4.5 (Elimination Rule For N [29])

Γ, G : N ` % : U8 Γ ` I : % [z/G] Γ, G : N, ? : % ` B : % [s(G)/G] Γ ` = : N
(NE)

Γ ` indN (G .%, I, G?.B, =) : % [=/G]

The notation G .% and G?.B binds the variable G in % and G , ? in B . This is a generalisation of the
binding mechanism of a _ abstraction to term formers with multiple subterms.

Notice that in the induction principle, we immediately apply the predicate to an arbitrary number =. This
is because stating the resulting universal statement requires quantifiers, which we have not discussed. It
is also always be�er to decouple the presentation of two di�erent types, as this makes the theory more
modular (i.e. we can remove or add new types without breaking old ones).

Each computation rule expresses how the induction principle cancels out when the arbitrary number
= is formed using each constructor. Since there are two constructors for N, it has two computation
rules. While this is the same idea as the V-reduction of the previous chapter, this time we express the
computation rules in terms of judgements, which means we only describe computation for well-typed

24

terms. Additionally, we directly define the equality notion associated with the computation, rather than
starting with a directed reduction relation and taking its equivalence closure.

Definition 4.6 (Computation Rules For N [29])

Γ, G : N ` % : U8 Γ ` I : % [z/G] ΓG : N, ? : % ` B : % [s(G)/G]
(NC1)

Γ ` indN (G .%, I, G?.B, z) ≡ I : % [z/G]
Γ, G : N ` % : U8 Γ ` I : % [z/G] ΓG : N, ? : % ` B : % [s(G)/G] Γ ` = : N

(NC2)
Γ ` indN (G .%, I, G?.B, s(=)) ≡ B [=/G, indN (G .%, I, G?.B, =)/?] : % [s(=)/G]

4.3.2 Recasting Some Propositional Connectives as Inductive Types

We can recast the types of the propositional connectives we have seen as inductive types. For � and ∧,
we postpone their discussion to the next section as they are special cases of the quantifier types, and �
cannot be placed under the framework of inductive types.

The type of � ∨ � is recast as the disjoint sum type � + �. The reason for this notation is that if � has =
inhabitants and � has< inhabitants, then�+� has = +< inhabitants. The rules remain largely the same
as in the simply typed lambda calculus.

Definition 4.7 (Rules For + [29])

Γ ` � : U8 Γ ` � : U9 (+F)
Γ ` � + � : U8t9

Γ ` " : � (+I1)
Γ ` in1 (")� : � + �

Γ ` " : � (+I2)
Γ ` in2 (")� : � + �

Γ, G : � + � ` % : U8 Γ, ~ : � ` #1 : % [in1 (~)/G] Γ, I : � ` #2 : % [in2 (I)/G] Γ ` " : � + �
(+E)

Γ ` ind+ (G .%,~.#1, I.#2, ") : % ["/G]
Γ, G : � + � ` % : U8 Γ, ~ : � ` #1 : % [in1 (~)/G] Γ, I : � ` #2 : % [in2 (I)/G] Γ ` " : �

(+C1)ind+ (G .%,~.#1, ~.#2, in1 (")) ≡ #1 ["/G] : % [in1 (")/G]
Γ, G : � + � ` % : U8 Γ, ~ : � ` #1 : % [in1 (~)/G] Γ, I : � ` #2 : % [in2 (I)/G] Γ ` " : �

(+C2)ind+ (G .%,~.#1, ~.#2, in2 (")) ≡ #2 ["/G] : % [in2 (")/G]

⊥ is recast as the empty type 0 with no constructors, while > is recast as the unit type 1 with a single
constructor taking no arguments. This notation also follows from the number of inhabitants.

Definition 4.8 (Rules For 0[29])
Because there are no constructors, 0 has no introduction rule nor computation rule.

Γ ctx (0F)
Γ ` 0 : U8

Γ, G : 0 ` % : U8 Γ ` " : 0 (0E)
Γ ` ind0 (G .%,") : % ["/G]

As with the simply typed lambda calculus before, ¬" is simply shorthand for" � 0.

Definition 4.9 (Rules For 1 [29])

25

Γ ctx (1F)
Γ ` 1 : U8

Γ ctx (1I)
Γ ` 〈〉 : 1

Γ, G : 1 ` % : U8 Γ ` # : % [〈〉/G] Γ ` " : 1 (1E)
Γ ` ind1 (G .%, # ,") : % ["/G]

Γ, G : 1 ` % : U8 Γ ` # : % [〈〉/G] (1C)
Γ ` ind1 (G .%, # , 〈〉) ≡ # : % [〈〉/G]

Notice that 1 now comes with an elimination rule and destructor/induction principle. This is necessary
because types can now depend on terms, so non-trivial types concerning 〈〉 can be constructed.

4.3.3 The Identity Type

Definitional equality provides us a notion of equality between terms, however this relation exists only
in the meta-theory, i.e. it exists outside of the language of types and the lambda calculus. What we
desire now is a type corresponding to the equality relation, commonly called the propositional equality
or identity type. It should at least reflect definitional equality (i.e. if " ≡ # , then " = # is inhabited)
since definitional equality represents a "weak" form of equality determined only by syntactic reduction
[30]. Since" ≡ # only if they have the same type, equality must also be defined only between terms of
the same type. Hence, for each type �, we should have a family of types " =� # indexed by ", # : �.
We will omit the subscript when the type of the terms being identified is obvious.

We intend to define this family inductively, by giving it constructors. Note that this di�ers from the
previous types we have considered - they have all been single types, rather than a family. Since equality is
the quintessential equivalence relation, a reasonable choice for constructors express reflexivity, symmetry
and transitivity. It turns out however, that we can derive symmetry and transitivity using the induction
principle on the equality type with only one constructor for reflexivity [31].

Definition 4.10 (Formation & Introduction Rules For = [29])

Γ ` � : U8 Γ ` " : � Γ ` # : � (= F)
Γ ` " =� # : U8

Γ ` � : U8 Γ ` " : � (= I)
Γ ` refl(") : " =� "

Notice that while the introduction rule only introduces inhabitants of " = " , we are able to use the
replacement rule from Definition 4.3 along with the congruence rules of = to inhabit " = # as long as
" ≡ # . Thus, we satisfy the requirement of reflecting definitional equality.

The induction principle & elimination rule for the identity type is determined by the shape of its con-
structor. However, note that because we are defining a family of types, the induction principle is defined
on the collection of all triples "1, "2 : � and "3 : G = ~, rather than just a particular " : G = ~. In the
literature, this is commonly called path induction.

Definition 4.11 (Elimination & Computation Rules For = [29])

Γ, G : �,~ : �, I : G = ~ ` % : U8

ΓG : � ` # : % [G/G, G/~, refl(G)/I] Γ ` "1 : � Γ ` "2 : � Γ ` "3 : "1 = "2 (= E)
Γ ` ind=� (G~I.%, G .# ,"1, "2, "3) : % ["1/G,"2/~,"3/I]

Γ, G : �,~ : �, I : G = ~ ` % : U8 ΓG : � ` # : % [G/G, G/~, refl(G)/I] Γ ` " : �
(= C)

Γ ` ind=� (G~I.%, G .# ,",", refl(")) ≡ # ["/G] : % ["/G,"/~, refl(")/I]

26

We can then define symmetry using path induction. Defining transitivity requires quantifiers, so we will
not discuss it here.

0 : �,1 : �, ? : 0 = 1 ` ind=� (G~I.~ = G, G .reflG , 0, 1, ?) : 1 = 0

With the inductive types we discussed before, the induction principle e�ectively expresses the idea that
all inhabitants of the type can be expressed using the constructors. This remains the case for the identity
type family G = ~ as G,~ vary over the inhabitants of�, which means the family is uniquely generated by
refl. Counterintuitively however, if we fix some" : �, we cannot show that refl(") is the only inhabitant
" = " . On the other hand, it is also not possible to exhibit such a counter-example inhabitant of" = " ,
so this property called "Uniqueness of Identity Proofs" (UIP) is independent of our version ofMLTT.

One solution adds toMLTT the following rule that reflects identity as definitional equality [30], allowing
one to prove UIP.

Γ ` # : "1 =� "2
Γ ` "1 ≡ "2 : �

However, such a rule makes type checking (recursively) undecidable [32], where type checking is the
problem of determining, given a term " and type �, whether " : �. We shall not have much to say
about this rule because it prevents a straightforward treatment of incompleteness.

Another solution is to instead add an axiom rectifying the independence. The axiom can either enforce
UIP [33] or embrace the existence of non-refl equality proofs by providing a way to generate such proofs.
The most prominent example of the la�er is homotopy type theory where identifications are interpreted
as paths in homotopy theory [29]. For MLTT with such extensions, our treatment of incompleteness
should be immediately applicable as it depends only on the basic aspects of MLTT.

4.4 �antifiers as Dependent Type Formers

As with the propositional connectives, we start our investigation of quantifiers from their BHK interpre-
tation, which is as follows.

Definition 4.12 (BHK Interpretation For The�antifiers [22])
• A proof of ∀G . % (G) is a construction that given an arbitrary object C , produces a proof of
% [C/G].

• A proof of ∃G . % (G) constitutes a pair consisting of an object C and a proof of % (C).

Notice that proofs of ∀G .% (G) and� � � are the same sort of construction: functions. The only di�erence
now is that instead of a proof of the antecedent �, the function takes as input arbitrary objects, and the
formula % (G) depends on this object. However, we have already identified the extended lambda calculus
as a unified language for the expression of both objects and proofs. Therefore, as the Curry-Howard
correspondence for ∀, we consider a generalisation of� � � in which the consequent type � may depend
on the given object/proof of type�. We denote this by

∏
G :� �(G), where G may occur free in the type �(G).

� � � is subsumed under the case when G does not occur free in �. Π is not an inductive type because
the abstraction constructor binds a variable. Nevertheless, we may consider formation, introduction,
elimination and computation rules for Π. The rules are similar to the simply-typed version we have
already seen.

Definition 4.13 (Rules For � [29])

Γ, ` � : U8 Γ, G : � ` � : U9 (ΠF)
Γ ` ∏G :� � : U8t9

Γ, G : � ` " : � (ΠI)
Γ ` _G� . " :

∏
G :� �

27

Γ ` " :
∏

G :� � Γ ` # : � (ΠE)
Γ ` " # : � [# /G]

Γ, G : � ` " : � Γ ` # : � (ΠC)
Γ ` (_G. ") # ≡ " [# /G] : � [# /G]

When we have repeated Πs in a term with binders of the same type, we abbreviate this by pu�ing all the
binders under a single Π. For example,

∏
G :�

∏
~:� � is abbreviated as

∏
G~:� �.

As with ∀, we have already seen proofs of ∃G . % (G) before - they are pairs, just like proofs of � ∧ �. We
may therefore consider their Curry-Howard correspondence a generalisation of � ∧ � where the type �
depends on the object/proof of type �. We denote this by

∑
G :� �(G), with � ∧ � being subsumed under

the case when G does not occur free in �, denoted � × �. Unlike Π, Σ’s constructor does not bind any
variables, so it can be expressed as an inductive type.

Definition 4.14 (Rules For � [29])

Γ, ` � : U8 Γ, G : � ` � : U9 (ΣF)
Γ ` ∑G :� � : U8t9

Γ ` " : � Γ ` # : � ["/G] (ΣI)
Γ ` 〈", # 〉 : ∑G :� �(G)

Γ, G :
∑

~:� � ` % : U8 Γ, ~ : �, I : � ` # : % [〈~, I〉/G] Γ ` " :
∑

~:� �
(ΣE)

Γ ` indΣ (G .%,~I.# ,") : % ["/G]
Γ, G :

∑
~:� � ` % : U8 Γ, ~ : �, I : � ` # : % [〈~, I〉/G] Γ ` "1 : � Γ, ~ : � ` "2 : �

(ΣC)
Γ ` indΣ (G .%,~I.# , 〈"1, "2〉) ≡ # ["1/~,"2/I] : % [〈"1, "2〉/G]

Repeated Σs are abbreviated in the same way as repeated Πs.

The projection functions we are familiar with from the simply-typed calculus may be re-obtained from
the induction principle. If Γ ` " :

∑
~:� �, then define c1 (") :≡ indΣ (G .�,~I.~,") and c2 (") :≡

indΣ (G .� [c1 (G)/~], ~I.I, "). It can then be shown that

Γ ` c1 (") : � and Γ ` c2 (") : � [c1 (")/G].

In classical logic, the quantifiers are interdefinable in the sense that ∃G . �(G) can instead be defined as
shorthand for ¬∀G . ¬�(G). This essentially boils down to double negation elimination and the way ¬
commutes with the quantifiers:

FOL ` ¬∃G . �(G) ↔ ∀G . ¬�(G)
FOL ` ¬∀G . �(G) ↔ ∃G . ¬�(G)

We know that intuitionistic logic (and by extension MLTT) does not allow double negation elimination,
but it also does not allow the commutation Γ ` ¬∏

G :� �(G) ↔ ∑
G :� ¬�(G). This is because to prove∑

G :� ¬�(G) we need to exhibit an explicit term of type �, which ¬∏
G :� �(G) does not provide.

4.5 Incompleteness, Revisited

Now that we have introducedMLTT, we demonstrate that the incompleteness theorems also apply to it.
The overall structure of the proofs do not change much, but we do have to work around the loss of certain
classical principles, in particular to do with double negation elimination. We will also simply assume (but
not specify) an encoding of terms (including types) and judgements as natural numbers. Finally, we
will assume we have the primitive recursive function diag(G) and relation prfMLTT (G,~, I) which act on
encodings of terms.

The function diag(G) takes the code of a one-place predicate % : N � U and produces the code of % p%q.
The relation prfMLTT (G,~, I) corresponds to type checking for MLTT by determining whether ~ codes

28

a derivation X and G and ~ code terms " and � such that X is a valid derivation with the conclusion
∗ ` " : �. Recall that in order to prove the incompleteness theorems for PA, we needed an internal
representation of prfPA, which exists only if prfPA is recursively decidable. The decidability of prfMLTT
follows from the decidability of type checking for MLTT, as established in [32].

4.5.1 Pa�ern Matching Definitions

The definitions for c1 (·) and c2 (·) using induction principles are di�icult to decipher. To prove the in-
completeness theorems, we will have to work inside MLTT to some capacity and so desire a be�er way
to define new functions using pa�ern matching instead of induction, similar to the mechanism found in
Haskell or Agda. For example, we can instead define c1 (·) as a function in the following way:

Γ `c1 : (
∑

~:� �) � �

c1 〈~, I〉 :≡ ~

When Γ is empty, we will omit the ` entirely. With this syntax, we can also make recursive calls, provided
that the recursion follows the structure of the constructor being pa�ern matched. Additionally, certain
usage of pa�ern matching on identity types allow a form of UIP to be proven [34]. Agda contains checks
disallowing unsound usage of pa�ern matching [35], but we do not have the luxury of an automated
checker. For this reason, we will default back to induction principles when dealing with identity types.

4.5.2 Representing Recursive Functions & Relations

We begin by establishing the result that MLTT represents all & only the recursive functions, following
[14]. We use an alternate definition of total recursive functions which restricts the use of ` [5] only when
we can ensure termination of the unbounded search for all possible inputs. It also removes the need for
rec[5 , 6], as recursion can be simulated using ` [5].

Definition 4.15 (Alternate Definition Of Recursive Functions [14])
The recursive functions are defined inductively:

1. The functions zero, succ and prni (for each natural numbers = and 1 ≤ 8 ≤ =) are recursive. So
are add(G1, G2) , G1 + G2 and mult(G1, G2) , G1 × G2.

2. The characteristic function j= (G1, G2) , if G1 = G2 then 1 else 0 of equality is recursive.

3. If 5 (G1, . . . , G:) and 61 (G1, . . . , G=) . . . 6: (G1, . . . , G=) are recursive, then so is
comp[5 , 61, . . . , 6:].

4. If 5 (G1, . . . G: , ~) is recursive and for all natural numbers =1, . . . , =: there is a natural number
< s.t. 5 (=1, . . . , =: ,<) = 0, then ` [5] is recursive.

With this inductive definition, we can prove by induction on the structure of recursive functions that
they are representable. The definition of representable remains the same: we just have to replace the
connectives by their MLTT version.

Definition 4.16 (Representable Functions & Relations in MLTT)
1. A function 5 (G1, . . . , G:) is represented by theMLTT predicate 5 : N � . . . � N︸ ︷︷ ︸

:+1 times

� U i� for every

natural number =1, . . . , =: ,<

29

5 (=1, . . . =: ,<) implies there is a term"5 such that ∗ ` "5 :
∏

(~:N) (5 =1 . . . =: ~ ↔ ~ =<)

2. A relation '(G1, . . . , G:) is represented by ' : N � . . . � N︸ ︷︷ ︸
: times

� U i� for every =1, . . . , =: ,

if '(=1, . . . , =:) holds then there is a term"' s.t. ∗ ` "' : ' =1 . . . =:
if '(=1, . . . , =:) does not hold then there is a term"' s.t. ∗ ` "' : ¬(' =1 . . . =:)

We separate the proof by induction into a series of lemmas, one for each case.

Lemma 4.17
The functions zero, succ, prni , add and mult are representable.

Proof. For each function 5 , the proof proceeds by constructing representing predicates 5 such that
whenever 5 (=1, . . . , =:) =<, 5 =1 . . . =: ~ is definitionally equal to ~ =<. With that, we can derive

∗ ` _~. 〈_G. G, _G . G〉 : ∏~:N (5 =1 . . . =: ~ ↔ ~ =<)

1. zero(G) , 0 is represented by zero :≡ _G~ : N. ~ = z because for any =, (zero = ~) ≡ (~ = 0). We
can see this by simply reducing the LHS and noting that 0 is shorthand for z.

2. succ(G) , G +1 is represented by succ :≡ _G~ : N. ~ = s(G). As before, reduce the LHS and unfold
= + 1 to see that succ = ~ ≡ ~ = = + 1.

3. prni (G1 . . . G=) is represented by prni :≡ _G1 . . . G= ~ : N. ~ = G8 .

4. To represent add(G1, G2) , G1 + G2, we construct an addition function insideMLTT.

plus : N � N � N
plus G z :≡ G

plus G s(~) :≡ s(plus G ~)

Then, we define add :≡ _G1G2~. ~ = plus G1 G2. To see that add =1 =2 ~ ≡ ~ = =1 + =2, induce on
=2.

5. mult(G1, G2) , G1 × G2 is represented by mult :≡ _G1G2~. ~ = times G1 G2, where

times : N � N � N
times G z :≡ z

times G s(~) :≡ plus (times G ~) G

Finally, induce on =2 to see that times =1 =2 ~ ≡ ~ = =1 × =2. a

For the next case of the characteristic function of equality, we will have to reason about the identity type
on natural numbers, in particular using it to derive a contradiction when we have a inhabitant of =1 = =2.
This is possible using path induction, but having to utilize path induction every time leads to a proof with
less clarity. Instead, we establish a specific equality type on N that is definitionally equal to either 0 or
1, depending on whether they are the same number or not.

30

Definition 4.18 (Observational Equality on N [31])
The observational equality EqN : N � N � U is defined by induction on both arguments.

EqN z z :≡ 1 EqN z s(G) :≡ 0

EqN s(~) z :≡ 0 EqN s(~) s(G) :≡ EqN ~ G

The use of path induction is encapsulated in establishing a correspondence between the identity type
and observational equality [31].

obs-of-id :
∏

G1G2:N (G1 = G2 � EqN G1 G2) and id-of-obs :
∏

G1G2:N (EqN G1 G2 � G1 = G2)

Because the first two arguments G1 and G2 can be discerned from the type of the third argument, we will
omit them when using obs-of-id and id-of-obs Equipped with observational equality, we can now move
on to the next case.

Lemma 4.19
The function j= is representable.

Proof. j= (G1, G2) is defined di�erently depending onwhetherG1 = G2 or not, sowe have to represent
this piecewise reasoning in the representing predicate.

j= :≡ _G1G2~ : N. (G1 = G2 � ~ = 1) × ((¬G1 = G2) � ~ = 0)

Now, suppose we have =1, =2,< such that j= (G1, =2) =<. If =1 = =2, then< = 1, and =1 is the exact
same term as =2. We can therefore establish that j= does represent j=, spli�ing the proof into two:

~ : N ` l-to-r : j= =1 =2 ~ � ~ =<

l-to-r G :≡ c1 (G) refl=1

~ : N ` r-to-l : ~ =< � j= =1 =2 ~

r-to-l G :≡ 〈_A . G, _A . ind0 (I.~ = 0, A refl=1)〉

If =1 ≠ =2, then< = 0 and =1 is syntactically distinct from =2. We establish the representation by
spli�ing the proof into two as well. This is where observational equality comes into play, as we use
it to obtain an instance of EqN =1 =2, which in this case is definitionally equal to 0.

~ : N ` l-to-r : j= =1 =2 ~ � ~ =<

l-to-r G :≡ c2 (G) (_A : =1 = =2. obs-of-id A)

~ : N ` r-to-l : ~ =< � j= =1 =2 ~

r-to-l G :≡ 〈_A : =1 = =2 . ind0 (I.~ = 1, obs-of-id A), _A . G〉 a

For the next case, we need some more mechanisms for identity types. In particular, we need to substitute
an equal term for another in a predicate. This is encapsulated by the transport function [31].

tr :
∏

�:N�U
∏

G~:N (G = ~ � �G � �~)

31

As before, we will omit the first three arguments when using tr because they can be inferred from the
type of the remaining arguments.

We also require an alternative induction principle called based path induction [29]. It is based because
we fix one side of the identity before doing the induction. We use the universally quantified version of
the induction principle.

8=3 ′
= :

∏
(0:�)

∏
(% :

∏
(G :�) 0 = G � U) (% G refl0) �

∏
G :�

∏
? :0=G % G ?

Lemma 4.20
If 5 (G1, . . . , G:) and 61 (G1, . . . , G=) . . . 6: (G1, . . . , G;) are representable, then so is comp[5 , 61, . . . , 6:].

Proof. For clarity and brevity, we will demonstrate the proof for when 5 has only one argument,
since the proof can be easily generalised anyway.

Let us denote the representability term for 5 and 6 in the following way.

5 (=) =< implies ∗ ` "5 (=)=< :
∏

(~:N) (5 = ~ ↔ ~ =<)
6(=1, . . . , =:) =< implies ∗ ` "6 (=1,...,=:)=< :

∏
(~:N) (6 =1 . . . =: ~ ↔ ~ =<)

Let comp[5 , 6] :≡ _G1 . . . G:~ : N.
∑

I:N (6 G1 . . . G: I)×(5 I ~), and suppose that comp[5 , 6] (=1 . . . =:) =
<. Le�ing ? = 6(=1, . . . , =:), we have that 5 (?) =< As before, we split the proof of representability
into two.

~ : N ` l-to-r : (comp[5 , 6] =1 . . . =: ~) � ~ =<

l-to-r 〈I, 〈G6, G 5 〉〉 :≡ c1 ("5 (?)=< ~) (tr (c1 ("6 (=1 ...=:)=? I) G6) G 5)︸ ︷︷ ︸
Substitute I=? into G5 :5 I ~

For the other half of the proof, we will need to use based path induction, omi�ing the predicate
because it can be inferred from the return type. We also use symm, a universally quantified version
of the symmetry of identity types we defined previously.

~ : N ` r-to-l : ~ =< � (comp[5 , 6] =1 . . . =: ~)
r-to-l G :≡ ind′= < _ 〈?, 〈c2 ("6 (=1 ...=:)=? ?) refl? , c2 ("5 (?)=< <) refl<〉〉 ~ (symm G) a

The next and final case in the inductive proof is considerably more complicated, requiring us to define
the less-than relation insideMLTT. We use the usual infix mathematical notation <, for readability.

_ < _ : N � N � U
G < ~ :≡ ∑

: :N (¬: = z) × (plus G : = ~)

we also require the following lemmas about natural numbers.

Lemma 4.21 (Canonical Form)
For every natural number =, there exists a term canon such that ∗ ` canon :

∏
G :N (G < = � (G =

0 + . . . + G = = − 1)). When = = 0, the empty disjunction corresponds to 0.

32

Proof. See Appendix 1.1. a

Lemma 4.22
There exists a term tricho such that ∗ ` tricho :

∏
G~:N ((~ < G + G < ~) + G = ~)

Proof. See Appendix 1.2 a

Lemma 4.23
If 5 (G1, . . . , G: , ~) is representable and for all natural numbers =1, . . . , =: there exists < such that
5 (=1, . . . , =: ,<) = 0, then ` [5] is also representable.

Proof. For brevity, we present only the proof for : = 1. We will also only describe the proof terms
informally, relying on the reader to explicitly construct the proof term from the informal description.
As before, let us denote the representability term for 5 in the following way:

5 (=1, =2) =< implies ∗ ` "5 (=1,=2)=< :
∏

(~:N) (5 =1 =2 ~ ↔ ~ =<).

To represent ` [5], we simply describe what it means to do an unbounded search, in the language
of MLTT.

` [5] :≡ _G~ : N. (5 G ~ 0) ×∏
8:N (8 < ~ � ¬(5 G 8 0))

If ` [5] (=) = <, then 5 (=,<) = 0 and for all 8 < <, 5 (=, 8) ≠ 0. This means that there exists 98 ≠ 0
such that 5 (=, 8) = 98 .

Now, to demonstrate the representability we have to demonstrate a term of type∏
~:N (` [5] = ~ ↔ ~ =<)

. For the right-to-le� direction, we assume ~ = < and first have to show that 5 = ~ 0. This can be
achieved by using the transport function to substitute< for ~ in c2 ("5 (=,<)=0 0) refl0. We also have
to show

∏
8:N (8 < ~ � (5 = 8 0 � 0)). For this second goal, first take an arbitrary 8 with 8 < ~

and 5 = 8 0, which means the goal becomes to prove 0 AKA to derive a contradiction. We may now
substitute in< for ~, so 8 < <. Using lemma 4.21, we have a term of type 8 = 0 + . . . + 8 = < − 1.
If < = 0, then this is the same as 0, and we are done. Otherwise, we have to eliminate on the
disjunctions, essentially doing a proof by cases with< cases. Luckily, each case follows the same
steps, as follows. Since 8 = ; for some ; less than<, we can substitute to obtain 5 = ; 0. But now,
we can use "5 (=,;)=9; to obtain 0 = 9; . Of course, we know that 9; ≠ 0, so we can use observational
equality to derive an instance of 0.

For the le�-to-right direction, we assume

0 : 5 = ~ 0

1 :
∏

8:N (8 < ~ � (5 = 8 0 � 0))

33

in order to show ~ = <. For this proof, we utilise lemma 4.22 to obtain a trichotomy between ~

and<, showing that both the case when< < ~ and ~ < < lead to contradictions. Consider what
happens if< < ~: by assumption1 we have 5 =< 0 � 0. Of course, we can derive 5 >E4A;8=4=< 0 by
"5 (=,<)=0, sowe have a contradiction. On the other hand, if~ < < thenwe can derive a contradiction
via lemma 4.21 and 0, in the same way as in the proof of the right-to-le� direction. Therefore, the
only possibility is ~ =<. a

Taking the above lemmas together, we may conclude the following theorem by induction on the structure
of recursive functions.

Theorem 4.24 (Representability of Recursive Functions)
Given a function 5 (G1, . . . , G:) on natural numbers, if 5 is recursive then it is representable.

As a corollary, we obtain a similar result for recursively decidable relations.

Corollary 4.25
A relation '(G1, . . . , G:) on natural numbers is representable if it is recursively decidable.

Proof. Since ' is recursively decidable, its characteristic function j' is recursive. By theorem 4.24,
j' is representable, which means we can define ' :≡ _G1 . . . G: : N. (j' G1 . . . G: 1).
If '(=1 . . . =:) holds, then j' (=1, . . . , =:) = 1 so we can derive

∗ ` c2 ("j' (=1,...,=:)=1 1) refl1 : ' =1 . . . =:

If If '(=1 . . . =:) does not hold, then j' (=1, . . . , =:) = 0 so we instead derive

∗ ` _A . obs-of-id(c1 ("j' (=1,...,=:)=0 1) A) : ' =1 . . . =: � 0

While the representability of recursive functions takes some work to establish, we briefly observe that
primitive recursive functions have a straightforward representation in MLTT since MLTT allows us to
define functions, unlike PA. We can express this in an alternate definition of representability.

Definition 4.26 (Functional Representability)
A function 5 (G1, . . . , G:) is represented by the MLTT function 5 ∗ : N � . . . � N︸ ︷︷ ︸

: times

� N i� for every

natural number =1, . . . , =: ,<

5 (=1, . . . =: ,<) implies ∗ ` 5 ∗ =1 . . . =: ≡< : N.

Every primitive recursive function is clearly functionally representable, since we are able to express the
zero, successor and projection functions in MLTT. Additionally, composition of functions and recursion
on N is expressible inMLTT. Functional representation implies the usual notion of representation.

34

Theorem 4.27 (Functional Representability implies Representability)
If 5 is functionally represented, then it is represented.

Proof. Let 5 :≡ _G1 . . . G:~. (~ = 5 ∗ G1 . . . G:). Then we have

∗ ` _~. 〈_G. G, _G . G〉 : ∏~:N (5 =1 . . . =: ~) ↔ (~ =<)

which is valid because 5 =1 . . . =: ~ ≡ (~ = 5 ∗ =1 . . . =:) ≡ (~ =<). a

4.5.3 The Incompleteness of MLTT

In order to discuss PA and MLTT together without confusion, we write MLTT ` " : � and MLTT ` �

to say that" is a term of type� and� has an inhabiting term, in the empty context. Before we consider
the incompleteness theorems, we must prove the fixed-point property for MLTT. There is not much to
reconsider here as we can follow the same lines of reasoning as for PA.

Lemma 4.28 (Fixed-point Property)
For any predicate � : N � U, there is a type � such thatMLTT ` � ↔ � p�q.

Proof. In order to define�, we first define an auxiliary predicate which diagonalises the argument
and applies � to the diagonalisation. The diagonalisation is done using the functional representa-
tion of the primitive recursive diag function, which takes the code of a one-place predicate % and
produces the code of its diagonalisation % p%q.

� :≡ _G. � (diag∗ G)

Of note here is that � is itself a one-place predicate, and so may be diagonalised. A diagonalisation
of � should be equivalent to � applied to a diagonalisation of �, which is exactly what we need.
Hence, we define � :≡ � p�q. With the functional representation of diag, we can in fact establish
that � and � p�q are definitionally equal, rather than just equivalent.

� ≡ � p�q By definition of �
≡ � (diag∗ p�q) Unfolding the definition of � and applying the abstraction
≡ � p� p�qq By definition of diag∗

≡ � p�q By definition of �

Now, the structure of the incompleteness proofs for MLTT remain the same as for PA. However, in our
proof for PA’s first theorem, in order to show PA 0 ¬�PA wemade crucial use of double-negation elimina-
tion in the application of the fixed-point property. We can no longer use double-negation elimination, and
as a result we have to re-evaluate our definition of l-consistency. The following definition is classically
equivalent to our original definition, but not so intuitionistically.

35

Definition 4.29 (8-consistency For MLTT [16])
"!)) is l-consistent i� for all � : N � U, if MLTT can derive ¬∏

G :N� G then it cannot derive
�< for some<.

This version of l-consistency still implies consistency since ifMLTT were inconsistent, it can derive�<

and ¬(� <) for all � and<. However, the la�er implies `MLTT ¬∏
G :N� G , which in combination with

the former means MLTT is l-inconsistent.

As in PA, we define Prov :≡ _I : N.
∑

G~:N prfMLTT (G,~, I) and obtain �MLTT as the fixed-point of Prov,
allowing us to prove the first incompleteness theorem again.

Theorem 4.30 (First Incompleteness Theorem)
If MLTT is l-consistent, then �MLTT is independent, where �MLTT is the fixed-point of Prov.

Proof.
(MLTT 0 �MLTT) Essentially the same as for PA (theorem 2.18).

(MLTT 0 ¬�MLTT) Suppose for a contradiction that MLTT ` ¬� . By the fixed-point property,
MLTT ` ¬¬Prov p�q which is intuitionistically equivalent to

PA ` ¬∏
(G~:N) ¬prfMLTT (G,~, p�q). (4.1)

SinceMLTT is consistent,MLTT 0 �MLTT implying no number codes a deriva-
tion of �MLTT. Hence, for any =, MLTT ` ¬prfMLTT = p�q. Combining this
with (4.1) shows thatMLTT is l-inconsistent, contradicting our assumption. a

The proof for the second incompleteness theorem then proceeds in much the same way assuming that
our Prov satisfies the Hilbert-Bernays-Löb conditions. As with the first theorem, we have to slightly
adjust the proof to account for our new definition of l-incompleteness. The proof of the formalised first
theorem remains valid intuitionistically.

In our proof of the incompleteness theorems, wewere constructing terms inMLTTwhose express purpose
is to represent recursively computablemanipulations of encodings ofMLTT terms& derivations. Because
of MLTT’s computational interpretation by the Curry-Howard correspondence, we were quite literally
constructing metaprograms. However, it was a tedious process. In the next chapters, we investigate
metaprogramming primitives that can serve as a more useable interface for the manipulation of code.
Another way of viewing this is that we will be using our work here with provability to logically justify
metaprogramming.

36

5 ` Modal Logics for Provability & Metapro-
gramming

I don’t think outside the box, I think of what I can do
with the box.

–Henri Matisse

Modal logics are classical/intuitionistic logics equipped with additional modal operators. A modal is an
expression that qualifies the truth of a statement [36], where "qualify" here means "to make less absolute".
In particular, we are concerned with propositional logics (both classical and intuitionistic) equipped with
the unary modal operator �. The formula �� reads "it is necessary that � holds", although here "nec-
essary" does not mean "logically necessary", but rather a form of qualified necessity. For example, in
epistemic logic [37] �� reads as "the agent knows that � holds", while in deontic logic [38] it reads as "�
is obligated to hold". Depending on which qualification one is interested in, the behaviour of � changes.

As we will soon see, the Hilbert-Bernays-Löb provability conditions show that ProvPA (p·q) can be viewed
as amodal necessity operator. Intuitively, we can read ProvPA(p�q) as "PA knows that� holds"1. Defining
a modal logic to capture the behavior of ProvPA (p·q) in a simpler system allows us to reason more clearly
about it, and to abstract away from the particularities of how ProvPA (p·q) is defined. Assuming the same
modal nature holds for ProvMLTT (p·q), we may also employ modal logic to reason about provability in
MLTT, at least informally.

Independent of developments in modal logic for provability, practitioners of metaprogramming have ob-
served that modal logic serves as a good guiding principle and abstraction for assigning types to metapro-
grams. In particular, the type �� is inhabited by code of terms with type �. This interpretation of the
modality is particularly vague, with no specification of a particular encoding. This serves to elucidate the
core concepts of metaprogramming and abstract away from particular encodings of syntax.

Despite this however, we desire a more logically rigorous interpretation of the type �� in metaprogram-
ming. Using the modal logics associated with provability and metaprogramming, we investigate the
viability of an interpretation of the type �� as the provability term Prov(p�q). Because there are many
logics and proof systems to discuss in this chapter, we will not give full characterisations of most of these
systems, focusing instead on highlighting their key features.

5.1 Axiomatic Deduction Systems for Modal Logic

Over time, there has been a proliferation of modal logics because the behavior of � changes depending on
the particular concept we are trying to model. One way to categorise classical propositional modal logics
is to isolate certain axioms which in combination with principles of classical reasoning, characterises the
logic. For this, we use axiomatic systems: the inference rules remain the same between logics, but the
axioms are allowed to vary.

For completeness, we first describe the language of propositional modal logic, which is the language of
PL plus the unary connective �.

Definition 5.1 (Language of Propositional Modal Logic [39])

1there are some problems with this reading, but it works as a first approximation of why we can view it as a modal necessity
operator

37

A,B F ?8 Atom
| > True
| ⊥ False
| (¬A) Not A
| (A ∧ B) A and B
| (A ∨ B) A or B
| (A � B) A implies B
| (�A) A necessarily holds

In an axiomatic deduction system, derivations are finite sequences of formulas of modal logic. Starting
from an empty list, derivations are constructed by either inserting a new formula that is an instance of
an axiom, or by applying an inference rule to produce a new formula based on previous formulas in the
list.

Definition 5.2 (Axioms & Inference Rules for Propositional Modal Logic [39])
The axioms include all tautologies of classical2 propositional logic (i.e. the �-less formulas � s.t.
` �), as well as some additional modal axioms that we allow to vary depending on the system we
intend to model. The inference rules remain fixed, given below.

(MP) Given � and � � �, prove �.

(Nec) Given �, prove ��.

(Sub) Given �, prove �′ where �′ is the result of uniformly replacing the propositional atoms in �

by arbitrary formulas. This simply allows the axioms to be used for arbitrary formulas rather
than just propositional atoms.

Given a particular collection of modal axioms T, we say `T � i� � appears in a valid axiomatic
derivation using axioms in T.

In an axiomatic system, we do not consider hypothetical derivations (i.e. Γ ` � where Γ is non-empty) at
all. This is the key distinction from natural deduction systems. We now consider our first example, the
modal logic K. This modal logic will serve as a base logic, which is extended by all the other systems we
will consider in this chapter.

Definition 5.3 (The Base Modal Logic K)
A very common axiom in the study of modal logic is axiom (K) �(? � @) � �? � �@, which simply
states that necessity is closed under modus ponens. This is an uncontroversial axiom3: if an agent
knows� � � and�, then the agent can surely make the inference to find out that � holds. Similarly,
if Prov(p� � �q) and Prov(p�q), then we can simply devise the numerical operation that applies
(� I) to the codes of the derivations. We call the classical modal logic with this axiom to be K, and
the intuitionistic modal logic IK.

2This can be tautologies of intuitionistic logic, if the intent is to model intuitionistic modal logic.
3To more rigorously understand why K is so ubiquitous, we have to consider the possible worlds semantics of modal logic, but

this is unfortunately beyond the scope of this report.

38

5.2 Provability Modal Logic

The exposition in this section is based on [40]. The classical propositional modal logic that arises from
treating Prov(p·q) as necessity is called GL, short for "Gödel-Löb". It is also o�en called provability
(modal) logic. The intended semantics or provability semantics for GL translates GL-sentences into PA-
sentences, where each atom is interpreted as an arbitrary sentence.

Definition 5.4 (GL Provability Semantics)
Let an arithmetic realisation be a function mapping propositional atoms to PA-sentences. Given
such a realisation A , we can translate arbitrary GL-formulas into PA sentences:

L ?8 MA = A (?8)
L ⊥ MA =⊥

L ¬� MA = ¬L � MA
L � ∧ � MA = L � MA ∧ L � MA
L � ∨ � MA = L � MA ∨ L � MA
L � � � MA = L � MA � L � MA

L �� MA = Prov(pL � MA q)

We write L � M to mean the set {L � MA | A an arithmetic realisation} of PA-sentences that � can
translate into, and PA ` L � M to mean that PA ` �′ holds for each �′ ∈ L � M. This is what we take
as semantics: A GL-formula � is valid i� PA proves every translation of �.

�GL � i� PA ` L � M

This is a perfectly fine definition, but we seek to characterise GL by a set of axioms under the axiomatic
system in order to compare and contrast it against other systems. For this purpose, we already have a
good starting point with the Hilbert-Bernays-Löb conditions for PA, which we recall now (omi�ing the
subscript for this section) - this time along with the associated modal axioms/inference rules.

(Nec) If PA ` � then PA ` Prov(p�q). Given �, prove ��.
(K) PA ` Prov(p� � �q) � (Prov(p�q) � Prov(p�q)) �(? � @) � (�? � �@)
(4) PA ` Prov(p�q) � Prov(pProv(p�q)q) �? � ��?

It is quite clear from this that (K) and (4) can serve as axioms of GL. However, it turns out that (K)
and (4) do not completely characterise the logic with respect to the provability semantics. In other
words, there are certain formulas validated by the provability semantics that cannot be derived from
these axioms alone.

The missing axiom

(L) �(�? � ?) � �?

was discovered by Löb, which turned out to be an internalisation of the following theorem.

Theorem 5.5 (Löb’s Theorem [18])
If PA ` Prov(p�q) � �, then PA ` �.

(K) and (L) together can derive (4), so we can omit (4) as an axiom for the axiomatic deduction system
for GL. The completeness of this deduction system with respect to the intended provability semantics of
GL was proven by Solovay.

39

Theorem 5.6 (Solovay’s Arithmetic Completeness [41])
`{K,L} � i� �GL � i� PA ` L � M

5.3 Modal Type Systems for Staged Metaprogramming

5.3.1 Staged Metaprogramming

Staged computation is the practice of separating an algorithm into stages, usually for performance or for
clarity in expressing the algorithm. The typical example is the separation of executing a program wri�en
in a high-level programming language into two stages: the compilation of the program and the execution
of the resulting machine code. While this example demonstrates staging for performance, the execution
of a compiler is also separated into stages demarcating the di�erent phases of the algorithm: lexer �
parser � semantic analyser � code generator. This separation makes the underlying algorithm clearer
and more modular, allowing one to swap in a di�erent code generator targe�ing a di�erent machine
architecture, for example.

The example of the separation between compilation and execution leads to asking whether we can do
the same staging within the programming language itself. In other words, to write programs that gener-
ate programs to be executed in the next stage. This necessarily involves programs manipulating syntax
to construct other programs, i.e. metaprogramming. As a small example of staged metaprogramming,
consider the power : = function which computes =: .

power 0 = = 1
power (: + 1) = = (?>F4A : =) ∗ =

If we are interested in a particular exponent only however, say: = 3, thenwe should just define power3= =

=∗=∗= as it is more e�icient without the recursive calls. We may need a few di�erent exponents however,
and it becomes tedious to define each of them separately. This is no longer necessary if we can define a
function which takes argument : and produces the code of the powerk function.

To allow this, we introduce the programming constructs known as quasiquotations È·É and splices $(·),
originally due to�ine [42]. The understanding is that the term inside the quasiquotation is quoted, and
so becomes an object representing syntax, i.e. code. The exception is thatwhenwe encounter a splice $(")
inside the quasiquotation, then the splice evaluates by evaluating " into a quote and substituting the
quoted term into the surrounding quasiquotation. In other words, we have the V-reduction $(È"É) {V

" . With quasiquotations and splices, we can express the function

superpower 0 = È_=. 1É
superpower (: + 1) = È_=. ($(BD?4A?>F4A :) =) ∗ =É

such that $(superpower 3) {V _=. = ∗ = ∗ =.
While this is a fairly artificial example, it serves to demonstrate how quasiquotation works. Clearly,
quasiquotations require a type system to prevent ill-typed quotes and splices. To begin with, we require
a type for terms that represent code. We also need to ensure that the term in a splice has this new code
type, otherwise a�empting to splice e.g. a natural number is ill-defined.

5.3.2 The Modal Analysis of Davies & Pfenning

Independently of developments in provability logic, Davies & Pfenning [43] performed an analysis of
staged metaprogramming and arrived at the conclusion that the intuitionistic propositional modal logic
IS4 provides a good framework for assigning types to _-calculus equipped with quasiquotations and
splices. The type �� is introduced, inhabited by codes of terms with type �.

40

Consider the case when" has type �, which means È"É should have the type ��. This suggests È·É to
be the constructor for ��. However," might contain free variables whose type can only be inferred from
the context Γ, i.e. Γ ` " : �. When we quote the term into code, the free variables lose their meaning
as we no longer keep track of their original context. Hence, È"É is meaningful only when " is a closed
term with no free variables, which suggests the introduction rule

` " : � (��)
` È"É : ��

Notice that this is very similar to the necessitation rule (Nec) from the modal axiomatic system, in the
sense that it proves �� from a derivation of � in the empty context4. Unfortunately, this is not flexible
enough as we have no way of factoring in splices, which rely on access to the context outside the quote.

The solution by Pfenning & Davies is to modify the structure of the context allowing for two kinds of
variables

G1 : �1 . . . G= : �=︸ ︷︷ ︸
code variables

;~1 : �1 . . . ~< : �<︸ ︷︷ ︸
ordinary variables

` " : �

The code variables are intended to stand in for splices, so they are allowed inside a quasiquotation. This
use of code variables is expressed by the elimination rule for �. We have to change the structure of
splices so that they be represented by code variables. Therefore, we obtain the following introduction
and elimination rules for �.

Definition 5.7 (Introduction & Elimination Rule for � [43])

Δ; · ` " : � (�I)
Δ; Γ ` È"É : ��

Δ; Γ ` " : �� Δ, D : �; Γ ` # : � (�E)
Δ; Γ ` let ÈDÉ = " in # : �

The introduction & elimination rules for the other connectives only manipulate the ordinary variables
while leaving the code variables intact.

The IS4modal logic is characterised by axioms (K), (4) and (T). The first two axioms should be familiar
from our investigation of GL. The new axiom (T) �? � ? states that we can evaluate code as a regular
term, i.e. splice code outside of any quote. We saw an instance of this in the superpower example, since
we needed to evaluate the code of superpower : to be able to use the generated code. We now show that
the system of Davies & Pfenning indeed validate these axioms.

∗; ∗ ` _G. _~. let ÈDÉ = G in (let ÈEÉ = ~ in ÈD EÉ) : �(� � �) � (�� � ��)
∗; ∗ ` _G. let ÈDÉ = G in ÈÈDÉÉ : �� � ���

∗; ∗ ` _G. let ÈDÉ = G in D : �� � �

One interesting aspect of this system is that it disallows the congruence rule

" {V " ′

È"É {V È" ′É

since the quotation is treated as code, the code must be sensitive to the particular syntax of the term.
reduction amounts to changing the syntax, which violates this sensitivity.

4Recall that all axiomatic derivations are in the empty context, since there is no support for hypothetical deduction.

41

5.3.3 Fitch-Style Natural Deduction for Modal Logic

Davies & Pfenning’s IS4 system is developed based on particular insights about metaprogramming. As a
result, it is not very clear how to extend or restrict their system to other modal logics. We present now
an alternate development of natural deduction for modal logic, independent of metaprogramming. We
then investigate its application towards metaprogramming.

The Gentzen-style natural deduction systems we have seen so far are based on trees. Historically, the
search for modal Gentzen-style natural deduction systems have been fraught with di�iculties. There is
however an alternate formulation of natural deduction for classical logic (without modalities) due to Fitch
[44] where derivations are instead represented as lists, as in an axiomatic system. In addition to formulas
though, a Fitch-style derivation may also contain other lists/derivations. Derivations within derivations
are used for hypothetical reasoning, and we call such lists subordinate derivations or subderivations for
short. For example, to prove � � � using the introduction rule, we open a subordinate derivation which
starts with � already assumed.

1. � assumption

2.
...

3. � got this somehow

4. � � � � � (1 − 3)

Here, lines 1 - 3 (the lines in the box) constitute the subderivation, and line 4 is obtained by applying the
(� I) rule to the subderivation. This is represented by the annotations on the right of the entry. Inference
rules such as the introduction and elimination rules behave as they do in axiomatic systems: they are
applied to previous entries in the list to produce a new formula. The di�erence now is that a rule may be
applied to a subordinate derivation as well.

Technically if an inference rule is applied inside a derivation X , then it can only be applied to formulas/-
subderivations occuring strictly in X . However, we may use the import rule in a subderivation to import
a copy of a formula in the outer derivation. For example,

1. � got this somehow

2. � assumption

3.
...

4. � import(1)

5. � � � �I(2 - 4)

Fitch later observed that subordinate derivations can also be used for the modal introduction rule (�I)
[45]. This time however, the subderivation is not used to introduce a hypothetical assumption, but rather
to restrict what formulas can be imported into the subderivation. Since the usage is di�erent, we call it
a strict subderivation, and label it appropriately.

1. strict

2.
...

3. � got this somehow

4. �� �I(2 - 5)

The particular imports that are allowed vary depending on the modal logic we intend to model, just like
the axioms in an axiomatic system. For the base modal logic K, only formulas of the form �� are allowed
to be imported, and the � is removed inside the strict subderivation [46]. To model a logic with axiom
(4), we add the choice to not drop the �when importing [46]. Finally, modelling axiom T requires adding
the additional inference rule that derives � from ��. We can view this as a strict import of �� as � from

42

inside the same derivation. In particular, this means a strict-import-T can be performed at the top level,
outside of any subderivation.

1. �� got this somehow

2. strict

3. � strict-import-K(1)

4.
...

5. � got this somehow

6. �� �I(2 - 5)

1. �� got this somehow

2. strict

3. �� strict-import-4(1)

4.
...

5. � got this somehow

6. �� �I(2 - 5)

1. �� got this somehow

2.
...

3. � strict-import-T(1)
4.

We can now a�empt to bring back some metaprogramming intuition for this Fitch-style system, even if
it does not keep track of _-terms. A strict subordinate derivation corresponds to working in a quasiquo-
tation, while strict-import-K seems to correspond to splicing. However, note that a K import can only be
performed on a formula exactly one subderivation outside. We saw in the derivation of �� � ��� using
the system of Davies & Pfenning that we need to be able to splice from outside two quasiquotes. This is
the e�ective contribution of the 4 import rule: it allows a �� assumption to be imported arbitrarily many
times without removing the �. Similarly, the T import rule allows top-level splices, which is necessary
for evaluating code.

A disadvantage of this Fitch-style natural deduction using lists of formulas is that there is no longer a
direct correspondence between the lambda terms and the structure of Fitch-style derivations. Thankfully,
we can adapt the idea of opening strict subordinate derivations to the Gentzen-style calculus, an idea
originating with Borghuis [47], Martini & Masini [48]. We present a more recent and streamlined version
of the theory due to Clouston [49].

There is a correspondence between regular subordinate derivations and the structure of the context in
Gentzen-style natural deduction. In particular, opening a subordinate proof with hypothetical assump-
tion� corresponds to inserting� in the context. This suggests that adapting strict subordinate derivations
will also require the insertion of some structure into the context.

Unlike regular subderivations, strict subderivations do not introduce new hypothetical assumptions, but
rather prevent access to formulas inferred from earlier assumptions, unless they are of a certain form.
With this in mind, in the Gentzen-style system for _-calculus, we add a lock constructionLOCK to the context
whenever we enter a quasiquotation using the (�I) rule. This lock construction restricts access to any
hypothetical assumptions inserted before the lock, which is expressed in the (Ass) rule. Only terms that
are being spliced can access locked assumptions, which is expressed by lock removal when we enter a
splice, as expressed by the� elimination rules. We present an elimination rule that modelsK, and another
rule modelling S4 - both based on the strict import rules for the Fitch-style deduction system. We call
these new systems the _K-calculus and _S4-calculus, respectively. They correspond to the logics IK and
IS4.

Definition 5.8 (Typing rules For � In ,K [49] and ,S4 [50])
The introduction and assumption rules are shared by both _K and _S4.

Γ,LOCK ` " : � (�I)
Γ ` È"É : ��

Γ = Γ1, G : �, Γ2 LOCK ∉ Γ2 (Ass)
Γ ` G : �

Splices in _K may only access variables that are locked exactly once. In particular, this also means
it cannot access variables that have not been locked.

Γ1 ` " : �� LOCK ∉ Γ2 (�E-K)
Γ1,LOCK, Γ2 ` $(") : �

Splices in _S4 are allowed to access all variables in the context, reflecting the strength of the K,

43

4 and T strict import rules. This is expressed by the removal of all locks in Γ, denoted by ΓUNLOCK. In
particularly, splices are allowed even when Γ contains no locks.

ΓUNLOCK ` " : �� (�E-S4)
Γ ` $(") : �

The remaining rules for the other connectives remain exactly the same as for the simply typed
lambda calculus.

As with Davies & Pfenning’s system, we can show that the modal axioms are indeed validated. Note that
the derivation for axiom (K) is applicable to both _K and _S4.

G : �� ` G : ��
G : �� ` $(G) : �

` _G. $(G) : �� � �

G : ��, ` G : ��
G : ��,LOCK,LOCK ` $(G) : �
G : ��,LOCK ` È$(G)É : ��
G : �� ` ÈÈ$(G)ÉÉ : ���

` _G. ÈÈ$(G)ÉÉ : �� � ���

G : �(� � �), ~ : �� ` G : �� � �

G : �(� � �), ~ : ��,LOCK ` $(G) : � � �

G : �(� � �), ~ : �� ` ~ : ��
G : �(� � �), ~ : ��,LOCK ` $(~) : �

G : �(� � �), ~ : ��,LOCK ` $(G) $(~) : �
G : �(� � �), ~ : �� ` È$(G) $(~)É : ��

G : �(� � �) ` _~. È$(G) $(~)É : �� � ��
` _G. _~. È$(G) $(~)É : �(� � �) � (�� � ��)

Unlike Davies & Pfenning’s system which was built from the ground up for metaprogramming, _K and
_S4 are derived from a general deduction system for modal logic. Unfortunately, this means that the
approach does not have much to say about reduction rules. We still expect the usual V-reduction rules
for the other connectives as long as they occur outside of a ÈÉ, as well as the following V rule:

$(È"É) {V "

but it is not clear what sort of congruence rule È·É should have. Following Davies & Pfenning by elimi-
nating the congruence rule for È·É is only sensible for _S4, where splices can occur outside of any quotes.
In _K, all splices occur inside a quote so the removal of the congruence rule simply means no V-reduction
for splices/quotes can occur at all, which does not seem correct. On the other hand, having a general
congruence rule violates the idea that a term under È·É is code, and therefore sensitive to syntactic ma-
nipulations. A good middle-ground seems to be to allow only the parts of a term occuring immediately
under a splice to reduce. In any case, we postpone the discussion of appropriate reduction rules for _K to
the next chapter, where we can use the provability semantics to se�le this ambiguity.

Regardless of this ambiguity with reduction rules, _K and _S4 are still conceptually simpler to reason
about than the Davies & Pfenning system, since the splicing operation is less verbose and requires less
manipulations in the context.

5.4 The Incompatibility Between Provability and Metaprogram-
ming

Having identified and examined the modal nature of both provability and metaprogramming, we may
now consider the possibility of interpreting the type �� more rigorously in terms of provability. The

44

type �� necessarily contains two components: the code of some term, and a witness that the term is
indeed of type �. At first thought, this is highly reminiscent of the provability type ProvMLTT (p�q) ≡∑

G~:N prf (G,~, p�q), because an inhabitant of this type has the form 〈", # 〉 where " : N codes a term

and # :
∑

~:N prf (",~, p�q) witnesses that the coded term indeed has type �. This suggests that we
can interpret �� as ProvMLTT (p�q). Notice that the constructive nature of MLTT is essential here - a
classical proof of an existential sentence does not constitute a pair.

On closer inspection however, there appears to be some wrinkles to this idea: the modal logics of prov-
ability GL and metaprogramming S4 are di�erent. While they share the common axioms (K) and (4),
GL has axiom (L) and S4 has axiom ()). A�empting to combine the two logics lead to severe issues with
consistency. Working purely in the axiomatic deduction system for modal logic, we can easily derive an
inconsistency from the combined use of axioms (L) and (T):

1. �(�? � ?) � �? Axiom (L)
2. �? � ? Axiom (T)
3. �(�? � ?) Apply rule (Nec) to 2
4. �? Apply rule (MP) to 1 and 3
5. ? Apply rule (MP) to 2 and 4
6. ⊥ Apply rule (Sub) to 5, substituting [⊥ /?]

We obtain a less opaque explanation of the inconsistency [51] by considering that axiom (T) allows
a derivation of � ⊥�⊥, which is equivalent to ¬(� ⊥). However, applying the proposed provability
interpretation to obtain ¬(ProvMLTT (p⊥q)), it is clear that this is the internalised consistency statement
of MLTT, which by the second incompleteness theorem cannot be proven unless MLTT is inconsistent.
Hence, the provability interpretation cannot validate axiom (T).
A more computational explanation of the inconsistency can be given by instead a�empting to integrate
axiom (L) into _S4 with the following rule, adapted from [52]:

Γ,LOCK, I : �� ` " : �
Γ ` fix I in" : �

Denoting the term for axiom (T) that we derived earlier as eval : �� � �, we may now derive the general
fixpoint combinator

Γ ` fix I in (_G. eval I G) : (� � �) � �

which makes the system inconsistent as it allows a term of any type � to be derived by simply applying
the above term to _G. G .

All together, these explanations suggest that we must be conservative in a�empting to interpret staged
metaprogramming as provability. Becausewe cannot interpret the full S4modality as provability, we have
to restrict it to just (K) and (4). This is a huge blow as it means provability cannot justify evaluation of
code, which is crucial in the practice of metaprogramming for actually using the metaprograms, as we
saw with the superpower example.

45

6 ` TheProvability Semantics ofMetaprogram-
ming in Martin-Löf’s Type Theory

Deep in the human unconscious is a pervasive need for a
logical universe that makes sense, But the real universe is
always one step beyond logic.

–from The Sayings of Muad’Dib by the Princess Irulan

–from Dune by Frank Herbert

In the previous chapter, we investigated provability andmetaprogramming under the unifying framework
of modal logic, discovering that while the modal logics GL and S4 (corresponding to provability and
metaprogramming respectively) share some common features, they are ultimately incompatible.

In this chapter, we push forward anyway by restricting to the modal logic K which is a shared sublogic
of both GL and S4. For K, instead of using the lock-based system _K, we can consider a more specialised
theory which annotates terms by their staging level [53]. Using these level annotations, we no longer
need to insert locks in the context, so the structure of the context remains the same as the regular simply-
typed _-calculus. We then proceed to adapt this idea of level annotations toMLTT, obtaining the theory
MLTTlvl.

Next, we sketch a provability semantics which translates derivations of MLTTlvl into derivations of
MLTT. Derivations of the type �� are translated into derivations of ProvMLTT p�q. As a corollary
of the provability semantics, we find that MLTTlvl is consistent, since MLTT is consistent as well [4].
This serves as a first check that MLTTK is a viable logical theory.

With this semantics in mind, we proceed to discuss the computation rules ofMLTTlvl that will be sound
under the semantics. We prove the type soundness of these definitional equality rules for MLTTK, as a
sanity check that MLTTK is also a viable typed programming language.

6.1 Staging Levels

Since we are interested in only the Kmodality, we may consider a simpler and more uniform representa-
tion of _K which avoids the use of locks. This representation is based on staging levels, which identifies
at what stage a particular term is defined.

We first introduce the idea for simple types, and then provide a straightforward extension to dependent
types in Martin-Löf’s type theory.

6.1.1 Simple Types

Suppose we have a derivation of Γ ` " : � in _K, where Γ contains = locks. Then we recognize that " is
occuring under = +< quotes and< splices, since each quote adds a lock and each splice removes a lock.
We identify this as the staging level of" [53], which is the number of quotes minus the number of splices
surrounding" .

Consider now the term È$($("))É at level =. The quote clearly owns the outer splice, since the term
inside the outer splice occurs at level = as well. However, the term in the inner splice occurs at level = − 1,
so it does not belong to this quote, but rather to some outer quote (not shown). This shows that quotes
at level = capture all and only splices of terms at level =.

46

One way to make explicit this idea of staging level is to annotate the typing judgement with a level [53],
instead of using locks. We call this theory with level annotations _lvl. To identify which level a variable
is bound at, we also annotate context variables by their level, leading to a typing judgement of the form:

G1 : (�1, =1), . . . G: : (�: , =:) `= " : �

Here, the derivation as a whole occurs at level =. In the context, variable G8 has type �8 and has staging
level =8 . This means G8 was bound by an abstraction at level =8 , and can only occur at level =8 inside " .
These are expressed by the following rules

Definition 6.1 (Context-related Rules For ,lvl)

Γ, G : (�,=) `= " : � (� I)
Γ `= _G. " : � � �

G : (�,=) ∈ Γ (Ass)
Γ `= G : �

Notice that we no longer have a need for locks, since the level annotation is now being used to restrict
access to variables at a given level. The introduction and elimination rules for � shi� the levels up and
down, rather than introducing and removing locks.

Definition 6.2 (Introduction & Elimination Rules For � in ,lvl)

Γ `=+1 " : � (�I)
Γ `= È"É : ��

Γ `= " : �� (�E)
Γ `=+1 $(") : �

In the context of metaprogramming, a term’s level denotes the stage at which it is to be evaluated. A term
at level 0 is evaluated at runtime, i.e. the current stage, while a term at positive levels are to be evaluated at
a future stage. Negative levels are also commonly included, which denote terms to be evaluated at compile
time [54]. However, having negative levels allow splices to occur at level 0 outside of any quotations, akin
to in _S4, which means negative levels are not valid under a provability interpretation. For this reason,
we will consider only non-negative levels.

In addition to keeping explicit track of levels, _lvl more closely resembles the regular simply typed _

calculus as we do not have to worry about locks in the context. Both of these features make it easier to
discuss the provability semantics of a level-annotated system than in a lock-based system. Of course, we
want the semantics to apply to the lock-based system as well, so we need to establish that _lvl can prove
anything _K can.

It is fairly straightforward to show that any typeable term in _K is also typeable in _lvl. Since the syntax
of types and terms remain the same, we only need to define a translation of contexts.

Definition 6.3 (Translation of ,K Contexts Into ,lvl Contexts)
We first define the translation indexed by a level : ∈ N:

L Γ,LOCK M:+1 , L Γ M:
L Γ, G : � M: , L Γ M: , G : (�,:)

Denoting the number of locks in Γ by | |Γ | |, one can naturally see that L Γ M: is well-defined only
when : ≥ ||Γ | |. Hence, a natural choice is to define the translation as

L Γ M , L Γ M | |Γ | |

47

With this translation, we can establish that for any derivation in _K, we can translate the context to
obtain a derivation in _lvl, and vice versa. We prove a slightly more general result amenable to a proof by
induction.

Theorem 6.4
1. For all : ∈ N, if Γ `_K " : � then L Γ M | |Γ | |+: ` | |Γ | |+:

_lvl
" : �.

2. If Γ `_K " : � then L Γ M ` | |Γ | |
_lvl

" : �.

Proof.
1. By induction on" , generalising : , Γ and �. See Appendix 2.1 for the proof.

2. This is just the special case of 1. when : = 0. a

Defining a translation in the opposite direction from _lvl to _K is more di�icult as there’s no guarantee
that the context will be increasingly ordered by level. However, this is not an issue as our translation from
_K to _lvl already ensures that any provability semantics for _lvl applies to both theories.

6.1.2 Dependent Types

We can fairly easily extend the level annotations to Martin-Löf’s type theory, obtaining MLTTlvl. With
dependent types, we must now also ensure that types in the context are well-formed at the level they are
annotated at, which is expressed via the well-formed context judgement.

Definition 6.5 (Context-related Rules For MLTTlvl)

Γ, G : (�,=) `= " : � (ΠI)
Γ `= _G. " :

∏
G :� �

G : (�,=) ∈ Γ (Ass)
Γ `= G : �

Γ `= � : U8 (ctx-var)
Γ, G : (�,=) ctx

The introduction and elimination rules for � remain exactly the same as in _lvl. However, we now also
have to consider the formation rule, which also shi�s the level up by one in accordance with the quote.

Definition 6.6 (Formation, Introduction & Elimination Rules For � in MLTTlvl)

Γ `=+1 � : U8 (�F)
Γ `= �� : U8

Γ `=+1 " : � (�I)
Γ `= È"É : ��

Γ `= " : �� (�E)
Γ `=+1 $(") : �

The remaining rules for the other connectives of MLTT remain the same, except that they will have to
propagate the level unchanged.

We can prove the following standard lemmas for MLTTlvl. Due to the mutual recursion between the
typing judgement, well-formed context judgement and definitional equality judgement, the proof relies
on the definitional equality rules, which are given only in Subsection 6.3.1 a�er we discuss the provability
semantics.

48

Lemma 6.7
1. If Γ `= " : � then Γ ctx.

2. If Γ `= " : � then Γ `= � : U8 for some universe level 8 .

3. (Weakening) If Γ,Δ `= " : � and Γ `< � : U8 , then for any fresh variable G not occuring in Γ
nor Δ, Γ, G : (�,<),Δ `= " : �.

4. (Substitution) If Γ, G : (�,<),Δ `= " : � and Γ `< # : � then Γ,Δ[# /G] `= " [# /G] :
� [# /G].

5. (Exchange) If Γ, G : (�,<), ~ : (�, =),Δ `: " : � and Γ `= � : U8 , then Γ, ~ : (�, =), G :
(�,<),Δ `: " : � .

Proof. All the proofs are done by mutual induction. See Appendix 2.2. a

6.2 Provability Semantics

As explained in the previous chapter, the reduction rules for _K, or in this case the definitional equality
rules forMLTTlvl, are ambiguous. We can se�le this ambiguity by considering what rules would be sound
with respect to the provability semantics. Independent of this, the provability semantics serves to justify
and explain the meaning of quotes and splices. It also reduces the consistency of MLTTlvl to MLTT,
which has already been proven by Martin-Löf [55].

6.2.1 A First A�empt

Recall from the previous chapter that the core idea behind the provability semantics is to translate the
term È"É : �� into an MLTT term of type

∑
G~:N (prf G ~ p�q). A canonical term of such type will be

a triple1 〈"1, "2, "3〉 where "1 codes a closed term of type �, "2 codes a derivation of this term, and
"3 witnesses that "2 is indeed such a derivation. While it is clear that "1 should code the result of
recursively translating " into MLTT, "2 has to code an MLTT derivation of "1, which we do not have
as we are only tanslating terms.

Due to this, we should rather consider a translation of derivations inMLTTK into derivations inMLTT,
proceeding recursively. Given a (�I) derivation (le�), we first recursively translate X to obtain X ′ (right).

X

Γ `=+1 " : � (�I)
Γ `= È"É : ��

=⇒ L X M

Γ′ ` " ′ : �′

The code of L X M can then be used in a derivation of
∑

G~:N (prf G ~ p�q).

X1

Γ ` p" ′q : N

X2

Γ ` pL X Mq : N
�?

Γ `�? : prf p" ′q pL X Mq p�q
Γ ` 〈p" ′q , pL X Mq , ???〉 :

∑
G~:N (prf G ~ p�q)

1Or to be pedantic, a pair whose right element is also a pair.

49

The �?s are unknown because they depend on the particular definition of prf. The construction of prf
is likely to take significant time, so we will leave it unknown in this report. On the other hand, X1 and
X2 should be easily obtainable as p" ′q and pL X Mq are just s repeatedly applied to z as they are natural
numbers in canonical form.

This is quite a naive a�empt at establishing a provability semantics for it has not accounted for splices
at all. In particular," may contain splices and it is not immediately clear what we should do with them
when translating derivations, as splices represent code that is as of yet unknown.

6.2.2 Splice Environments

In order to deal with splices, we take inspiration from the splice environments of [54]. Splice environments
provide yet another way of representing metaprograms. Rather than having splices inside a quote, splices
are instead represented by a splice variable. The corresponding quote is then annotated with a splice
environment, which keeps track of the splice variables inside the quote and the code terms to be spliced
in place of each splice variable. As an example, the term on the le� with regular quotes and splices can
be represented using splice environments by the term on the right.

È"1 $("2) È$("3)ÉÉ becomes
�
"1 B

′ ÈBÉB ↦→"3

�
B′ ↦→"2

In [54], splice environments provide the advantage that terms inside quotes can be treated opaquely,
since all the splices have been extracted. With splices, this is not possible as we must be able to inspect
inside a quote in order to evaluate splices. The opacity provides greater freedom in designing the internal
representation of code.

For the provability semantics, we can take a similar approach to translating splices by replacing them
with splice variables. When we eventually get to the quote È"É, we can translate the derivation X of "
to obtain X ′ and" ′. As before, we may take the code of" ′ and X ′, but of course," ′ is no longer a closed
term because it now contains the splice variables. Hence, the code terms we extracted from each splice
have to be substituted into the code of " ′. Similarly, the derivation from each extracted code term has
to be substituted into X ′.

In [54], an elaboration procedure translates terms in a level-annotated theory2 with quotes and splices, to
terms in a theory with quotes annotated by splice environments. The elaboration procedure returns both
a term and a splice environment, which keeps track of splices that have not been captured by a quote
yet. We do the same, except that our procedure works at the level of derivations not terms. First, we set
up our own definition of splice environments. While splice environments in [54] map splices to terms, we
have to also keep track of their derivations, since our elaboration procedure operates on terms.

Definition 6.8 (Splice Environments)
A splice environment is defined as a list of splice definitions. A splice definition consists of a splice
variable B , its expected MLTT type �, the MLTT term " that is meant to be spliced in, and an
MLTT derivation X of " . It is also annotated by a level =, denoting the level at which the splice
occured. We denote splice environments as q .

q F ∗ Empty Environment

| q, B : � =↦−→ " ;X Splice Definition

Given a splice environment q, B : � =↦−→ " ;X , " is intended to be a term of type
∑

G~:N (prf G ~ p�qq).
Here, p�qq denotes the term where the previous splices in q are substituted into the code of �. The
substitution is necessary since � is a dependent type so it may itself contain other splice variables.

2Specifically, System F.

50

Definition 6.9 (Splice Substitutions)
If q = B1 : �1

=↦−→ "1;X1, . . . , B: : �:

=↦−→ ": ;X: , then p"qq denotes the splice substituted term

subst-term∗ c1 ("1) pB1q (. . . (subst-term∗ c1 (":) pB:q p"q) . . .)

Here, subst-term(G,~, I) is the primitive recursive function that substitutes the term coded by G

for occurrences of the variable coded by ~ in the term coded by I. Recall that primitive recursive
functions may be more naturally represented by a function from N to N in MLTT, rather than a
relation. Additionally, we take the le� projection of "1 with the expectation that it codes the term
to be spliced in.

We may define the same operation but for codes of derivations instead,

pXqq ≡ subst-deriv∗ c1 (c2 ("1)) pB1q (. . . (subst-deriv∗ c1 (c2 (":)) pB:q pXq) . . .)

where subst-deriv(G,~, I) is the primitive recursive function that substitutes the derivation coded
by G for occurrences of the variable coded by ~ in the derivation coded by I.

We only assume the existence of subst-term and subst-deriv but it is easy to intuitively see why they
are primitive recursive, since substitution amounts to traversing a finitely-sized term/derivation and
replacing subparts of it.

6.2.3 The Elaboration Procedure

Wemay nowdescribe the elaboration procedure, which takes place recursively on derivationsX ofMLTTlvl,
returning an MLTT derivation L X M and a splice environment q . We denote this as

X �⇒ L X M q

Due to time constraints, we provide only a sketch of the elaboration for the � formation, introduction
and elimination rules. In particular, we will ignore the construction of Γ ctx derivations when defining
the elaboration procedure. Some additional work will be needed to flesh out the details of the provability
semantics.

Definition 6.10 (Elaboration of �E)
Given a derivation ending with �E, we first recursively elaborate its subderivation X .

X

Γ `= " : ��

�⇒ L X M

Γ′ ` " ′ :
∑

G~:N (prf G ~ p�′qq1)

q2

Γ′ contains all the variables originally in Γ along with any newly added splice variables during the
elaboration of X . These splice variables in Γ′ are the same as those in q2.

Rather than directly building on L X M, we elaborate the (�E) derivation to a derivation ending with
the assumption (Ass) rule, applied to a fresh splice variable B that has not been used before. This
e�ectively replaces the splice with a splice variable which acts as a placeholder. The splice is then
added to the splice environment q2, stored there until we encounter the quote corresponding to this
splice.

51

X

Γ `= " : �� (�E)
Γ `=+1 $(") : �

�⇒ Γ′, qΓ
1 , B : �

′ ctx
(Ass)

Γ′, qΓ
1 , B : �

′ ` B : �′
q2, q1, B : �′ =↦−→ " ′; L X M

qΓ
1 denotes the append q1 into a context. We have to add back the q1 splice variables so that �′ will

be well-formed under the given context.

While the elaboration of a splice inserts new splice variables into the splice environment, the elaboration
of a quote removes splices in order to substitute them into the derivation. The elaboration of (�I) remains
mostly the same as the naive first a�empt, except that we now have to substitute in the splices captureed
by the quote.

Definition 6.11 (Elaboration of (�I))
Given a derivation ending with �E, first recursively elaborate its subderivation X .

X

Γ `=+1 " : �

�⇒ L X M

Γ′ ` " ′ : �′

q

Then, the (�I) derivation is elaborated into a derivation of Prov p�′q, using the code of L X M and
" ′ to construct the term.

X

Γ `=+1 " : � (�I)
Γ `= È"É : ��

�⇒ X1 X2

�?
Γ′ − q.= `�? : prf p" ′qq.= pL X Mqq.= p�

′qq.=

Γ′ − q.= ` 〈p" ′qq.= , pL X Mqq.= , ???〉 :
∑

G~:N (prf G ~ p�′qq.=)
bqc=

In the elaboration, q.= denotes the splice environment containing all & only level = splice variables
in q while bqc= denotes the splice environment containing all splices variables in q except at level
=. Essentially, we remove the level = splices and substitute them into the codes of " ′, L X M and �′,
leaving the remaining untouched.

The derivations X1 and X2, given below due to space constraints, can be derived from the derivations
of the terms being spliced in, obtained from q.=.

X1

Γ′ − q.= ` p" ′qq.= : N

X2

Γ′ − q.= ` pL X Mqq.= : N

Finally, the elaboration of (�F) is similar to (�I) in that it takes the code of the type and substitutes in
the captured splices.

Definition 6.12 (Elaboration of (�F))
As usual, first we elaborate the subderivation.

X

Γ `=+1 � : U8

�⇒ L X M

Γ′ ` �′ : U8

q

52

Then, the elaboration only uses the code of �′ and not L X M, substituting in the captured splices as
in (�I).

X

Γ `=+1 � : U8 (�I)
Γ `= �� : U8

�⇒
�?

Γ′ − q.=, G : N, ~ : N ` prf G ~ p�′qq.= : U8

Γ′ − q.= ` ∑G~:N (prf G ~ p�′qq.=) : U8

bqc=

We omit the two derivations that show N is a well-formed type (arising from the type of G and ~)
since they are simply applications of (N)F.

The rules for the remaining connectives are elaborated in the obvious sense by re-applying the same rule
and propagating the splice environments. For example, the elaboration of (ΠE) is

X1

Γ `= " :
∏

G :� �

X2

Γ `= # : � (ΠE)
Γ `= " # : � [# /G]

�⇒
L X1 M

Γ′ ` " ′ :
∏

G :�′ �′

L X2 M

Γ′′ ` # ′ : �′
(ΠE)

Γ′ ∪ Γ′′ ` " ′ # ′ : �′[# ′/G]

q1, q2

where Γ′ ∪ Γ′′ denotes the union of the two contexts. This is necessary so that the splice variables from
both derivations are combined. q1 and q2 are the splice environments obtained from elaborating X1 and
q2 respectively.

Since this is just a sketch, it remains to be seen whether every elaboration produces a valid derivation
in MLTT. If it did, we can establish the consistency of MLTTlvl on the consistency of MLTT, since the
consistency ofMLTT means that there is no valid derivation of ∗ ` " : 0.

6.2.4 A Simple Example

As a simple example of the elaboration, consider the function numeral below which computes the code
of the canonical form of a natural number. It is the internalised version of the = operation which converts
a natural number = in the metatheory into the term with s applied = times to z.

numeral : N � �N
numeral z :≡ ÈzÉ
numeral s(G) :≡ Ès($(numeral G))É

Desugaring the pa�ern matching notation gives us

∗ `0 _=. indN (G .�N, ÈzÉ , G?. Ès($(?))É , =) : N � �N

We first elaborate the base case in order to demonstrate an example with no splices. The base case has
the following derivation:

= : (N, 0) ctx
X1 =

= : (N, 0) `1 z : N
= : (N, 0) `0 ÈzÉ : �N

Elaborating the subderivation X1 gives us an empty splice environment, since there are no splices.

= : N ctxL X1 M =
= : N ` z : N ∗

We then take the code of L X1 M in the elaboration of the whole derivation:

53

= : N ` pzq : N = : N ` pL X1 Mq : N
�?

= : N `�? : prf p" ′qq.= pL X Mqq.= p�
′qq.=

= : N ` 〈pzq , pL X1 Mq , ???〉 :
∑

G~:N (prf G ~ pNq)

∗

Now, we move on to the inductive case, which demonstrates how a splice is handled. The derivation of
the inductive case is

= : (N, 0), G : (N, 0), ? : (�N, 0) ctx
X2 =

= : (N, 0), G : (N, 0), ? : (�N, 0) `0 ? : �N
= : (N, 0), G : (N, 0), ? : (�N, 0) `1 $(?) : N

X3 =
= : (N, 0), G : (N, 0), ? : (�N, 0) `1 s($(?)) : N

= : (N, 0), G : (N, 0), ? : (�N, 0) `0 Ès($(?))É : �N

For the elaboration of X2, we obtain

= : N, G : N, ? :
∑

G~:N (prf G ~ pNq) ctx
L X2 M =

= : N, G : N, ? :
∑

G~:N (prf G ~ pNq) ` ? :
∑

G~:N (prf G ~ pNq)
∗

L X2 M is then placed in the splice environment when we elaborate X3. The splice variable B replaces it as a
placeholder.

= : N, G : N, ? :
∑

G~:N (prf G ~ pNq), B : N ctx

= : N, G : N, ? :
∑

G~:N (prf G ~ pNq), B : N ` B : N
L X3 M =

= : N, G : N, ? :
∑

G~:N (prf G ~ pNq), B : N ` s(B) : N

B : N 0↦−−→ ?; L X2 M

Finally, we elaborate the overall derivation. Since the quote occurs at level 0, it captures all splices at
level 0, including the one we just added to the splice environment. Hence, we remove it from the context
and the splice environment, substituting the term ? for B into the codes of s(B) and L X3 M, and using
L X2 M in the derivation of these substituted codes. Le�ing Γ = = : N, G : N, ? :

∑
G~:N (prf G ~ pNq) and

q = B : N 0↦−−→ ?; L X2 M, the result of the elaboration becomes

L X2 M

Γ ` psqq : N

L X2 M

Γ ` pL X3 Mqq : N
�?

Γ `�? : prf ps(B)qq pL X3 Mqq pNqq

Γ ` 〈subst-term∗ c1 (?) pBq ps(B)q , pL X3 Mqq , ???〉 :
∑

G~:N (prf G ~ pNqq)

∗

The substitution operation psqq in the conclusion is unfolded to demonstrate the resulting splice substi-
tution.

6.3 Type Soundness of MLTTlvl

6.3.1 Computation and Congruence Rules of �

We can determine how the definitional equality rules of MLTTlvl - including the computation rules for
� - should behave in order to be sound with respect to the provability semantics. Informally speaking,

54

soundness means that if " ≡ # in MLTTlvl, and they elaborate into " ′ # ′ in MLTT, then we expect
" ′ ≡ # ′ just as well.

Any term " at level greater than 0 is eventually contained in a quote, which as we’ve seen from the
provability semantics means that it is eventually converted into a natural number coding the term. Since
the code represents the particular syntactic form of" , it is not definitionally equal to the code of a syn-
tactically di�erent term # , even if" and # are themselves definitionally equal. Therefore, this suggests
we can only allow computation rules at level 0.

Definition 6.13 (Computation Rules For MLTTlvl Connectives Except �)
The computation rules for the MLTTlvl connectives remain the same, but they are only allowed at
level 0. This is accomplished by annotating the definitional equality judgement with levels, as we
did with the typing judgement. For example, the computational rule for Π becomes

Γ, G : (�, 0) `0 " : � Γ `0 # : � (ΠC)
Γ `0 (_G. ") # ≡ " [# /G] : � [# /G]

The exception to this restriction are splices. All splices must occur at a level greater than 1 anyway, but
at level 1, we see that the provability semantics elaborates it into a substitution operation outside of the
code. Hence, we allow a splice to cancel out a quote at level 1.

Definition 6.14 (Computation Rule For � in MLTTlvl)

Γ `1 " : � (ΠC)
Γ `1 $(È"É) ≡ " : �

terms at level 0 and splices at level 1 can still occur as a subterm under an arbitrary amount of quotes
and splices, so we maintain the congruence rules for all term formers. In particular this includes quotes,
contrary to the analysis of Pfenning & Davies in the previous chapter.

6.3.2 Progress & Preservation

Having established the computation rules ofMLTTlvl, wemay now prove the type soundness ofMLTTlvl.
Because definitional equality is a typed judgement, it is particularly easy to establish that definitional
equality preserves types: if" : � and" ≡ # , then # : �. In fact, we can prove a stronger result.

Theorem 6.15 (Preservation)
If Γ `= " ≡ # : �, then Γ `= " : � and Γ `= # : �.

Proof. By induction on Γ `= " ≡ # : �. For the full proof, see Appendix 2.3. a

While preservation ensures that computation rules respect typing, progress ensures that any closed term
can continue to progress its computation until it becomes a value of the given type. This requires us to
first describe what the values of MLTTlvl are.

Typically, a term is a value if it is in canonical form, which means it is composed entirely of constructors
with the idea that all the eliminators have been cancelled out so no more computation rules may be

55

applied. In MLTTlvl, we restrict computation inside quotes since they are meant to be code objects, so
a value is no longer necessarily canonical. The notion of a value changes depending on the level. An
additional complication is that for abstraction _G. " , " no longer has to be closed, so we need a more
general description of terms that are "stuck" in computation, which we say is in normal form. A term is
in canonical form if it is normal and closed.

Definition 6.16 (Normal Forms of MLTTlvl)
We describe normal forms mutually along with neutral terms, which describe destructors that are
stuck and not able to compute yet. They are defined as untyped, level-annotated, inductively defined
relations" normal= and" neutral= .

First of all, any neutral term is normal since it cannot compute further.

" neutral=
" normal=

Additionally, any term in constructor form is always in normal form as long as its subterms are, at
all levels. This includes type formers, with the understanding that they are the constructors of U8 .
For quotes and �, we have to shi� the level up by one.

" normal=+1
È"É normal=

� normal=+1
�� normal=

" normal=
_G. " normal= z normal=

" normal=
s(") normal=

· · ·

Variables & Destructors are also normal at any level above 1, where it becomes code. The exception
to this is splices, which can only occur in a normal form at level 2 or more.

G normal=+1
" normal=+1

$(") normal=+2
" normal= # normal=

" # normal=
� normal= "1 normal= "2 normal= "3 normal=

indN (G .�,"1, G?."2, "3) normal=
· · ·

The neutral terms describe when a destructor is stuck on a variable, but otherwise should be allowed
to compute. Hence, we only have description for neutrals only at level 1 for splices and at level 0 for
the other destructors, since the higher levels are already covered as normal forms.

G neutral0
" neutral0

$(") neutral1
" neutral0 # normal0

" # neutral0
� normal0 "1 normal0 "2 normal0 "3 neutral0

indN (G .�,"1, G?."2, "3) neutral0
· · ·

With this definition, we can now state and prove the progress theorem.

Theorem 6.17 (Progress)
If ∗ `= " : �, then either " normal= or there is a term # such that ∗ `= " {V # : �. Here, we
use{V to refer to a version of the definitional equality judgement without the equivalence closure
rules, only computation and congruence rules.

Proof. By induction on ∗ `= " : �. For the full proof, see Appendix 2.4. a

56

7 ` Evaluation
7.1 Incompleteness of MLTT

The proof ofMLTT’s incompleteness proceeds very similarly to the standard proof for PA. However, we
had to make a change in the definition of l-consistency. Even though the new and old definitions are
classically equivalent, they are not intuitionistically equivalent.

One possible explanation as to why the original definition does not work in MLTT is that the intuition-
istic character of the existential quantifier makes the original definition too trivial. A proof of

∑
G :N� G

constitutes a pair 〈" : N, # : � "〉. Since this is a proof from the empty context, we can argue that "
has to be definitionally equal to a term in canonical form, i.e. some< such that<. Hence, this means
any proof of

∑
G :N� G must include a proof of some � <, contradicting the assumption. In other words,

the original definition is simply a re-statement of the intuitionistic character of the existential quantifier,
as defined in the BHK interpretation. It does not state anything new or profound about the theory.

On the other hand, we cannot construct such an argument for the new definition since a proof of
¬∏

G :N� G does not constitute any proof of � <. This suggests that our new definition is indeed the
be�er definition when working intuitionistically.

7.2 MLTTlvl

7.2.1 The Provability Semantics

The provability semantics provided some justification for the use of quasiquotes and splices in MLTTlvl

allowing the expression of staged metaprograms. However, due to the incompatibility between provabil-
ity and axiom (T), MLTTlvl is missing the ability to evaluate code. This is a crucial aspect of staged
metaprogramming systems, as it allows the output of metaprograms to actually be used. As it stands,
our theory can only express metaprograms and reason about their output (see the next subsection for an
example), but not to use them.

Additionally, we ultimately had to quite heavily restrict the computation rules in the theory to only oper-
ate at level 0. The impact of this restriction can be demonstrated with an example that would otherwise
have worked if we had computation rules at level 1.

We will a�empt to use MLTTlvl to prove a formalisation of Lemma 4.21, a metatheorem which we had
earlier used to establish that MLTT represents all computable functions. Omi�ing the case = = 0 which
we had to handle separately as a special case, we can re-state the lemma more cleanly: for every natural
number =, there exists a term canon such that ∗ ` canon :

∏
G :N (G < = + 1 � (G = 0 + . . . + G = =)).

Expressing the formalised version of the lemma requires the construction of two simple metaprograms,
one which represents the = operation and one which represents the construction of G = 0 + . . . + G = =.
The former we have seen in the previous chapter as the example term that we used to demonstrate the
provability semantics.

numeral : N � �N
numeral z :≡ ÈzÉ
numeral s(=) :≡ Ès($(numeral =))É

disjunct : N � �(N � U)
disjunct z :≡ È_G. G = zÉ
disjunct s(=) :≡ È_G. ($(disjunct =) G) + (G = $(numeral s(=)))É

Then, the statement of the formalised lemma can be expressed as∏
=:N �

∏
G :N (G < $(numeral s(=)) � $(disjunct =) G)

Notice that in expressing disjunct, we had to abstract over G to ensure that the term inside the quasiquote

57

is closed and does not refer to the free occurence of G . As a result, we then have to apply $(disjunct =)
to G whenever we want to use disjunct, particularly in the recursive definition of disjunct itself and in
the formalised lemma’s statement. Now, to prove the formalised lemma, we would expect to perform
induction on =. However, we encounter issues when a�empting the inductive case, in which we must
provide a term of type

= : (N, 0), ? : (�∏G :N (G <$(numeral s(=)) � $(disjunct =) G), 0)
`1 ∏G :N (G < $(numeral s(s(=))) � $(disjunct s(=)) G)

If we allow the definition of disjunct to unfold, this would be definitionally equal to

= : (N, 0),? : (�∏G :N (G < $(numeral s(=)) � $(disjunct =) G), 0)
`1 ∏G :N (G < $(numeral s(s(=))) � ($(disjunct =) G) + (G = $(numeral s(=))))

which we can prove (with some e�ort) using the the inductive hypothesis ? . However, this unfolding
takes place at level 1, so requires the use of N. and Π’s computation rule at level 1, which is disallowed
by the provability semantics.

With all the problemswe have encountered between the incompatibility of provability and stagedmetapro-
gramming, and this restriction on computational rules, the conclusion appears to be that provability is
not a good way to justify staged metaprogramming.

7.2.2 Expressivity of MLTTlvl

We have so far restricted our work on equipping MLTTlvl with staged metaprogramming capabilities.
This is because staged metaprogramming has been a major focus in homogenous metaprogramming
research, and has a straightforward modal interpretation as explained in Chapter 5. However, staged
metaprogramming is purely generative [7]: it only provides primitives for the construction of code, but
not the inspection of code. In MLTTlvl, we can construct code using a quasiquotation, but we cannot
inspect the contents of code, for example by pa�ern matching on the syntax. A theory capable of such
inspection is likely to take us beyond modal logic, although it may still be possible to give it a provability
interpretation.

In the introduction, we discussed tactics as a kind of metaprograms that aid in the construction of proofs.
However, even the simplest tactics require some capability for inspection, since it has to inspect the over-
all form of the theorem statement in order to decide the appropriate proof to generate. Furthermore,
the lack of evaluation prevents us from using the output of such tactics, even if we could express them.
Hence, MLTTlvl itself is still a far cry from providing a practical metaprogramming experience for theo-
rem provers.

7.3 Ethical Considerations

This project has not involved any animals, human or otherwise, other than the author of this report and
her supervisor. There is no data collected on these two persons either. Due to the project’s very theoretical
nature, we do not anticipate this project to have any substantial impact on developing countries or the
environment. We also doubt that this project is likely to be of use to themilitary or terrorist organisations,
not least because we have ended up with a negative result. Any autonomous robots based on the theory
we developed are not likely to be very functional.

Finally, there are no concerns with so�ware copyright since we have not used any so�ware other than
LATEX and the packages on CTAN, which have both been made available for free use.

58

8 ` Conclusion
8.1 Summary

We started with the intention of equipping intuitionistic type theory with metaprogramming primitives
so that it may express its own metaprograms and more importantly, to reason about its own metapro-
grams. In order to justify the primitives, we interpreted them using notions from provability.

We began by exploring the central theorem in provability: Gödel’s incompleteness theorems. Gödel’s
proof establishes that a su�iciently strong theory is already innately capable of a form of metaprogram-
ming. In particular, Gödel encoded formulas and derivations of the formal theory of arithmetic PA as
numbers, allowing PA to represent operations that manipulate its own formulas/derivations and to rea-
son about them.

PA is formulated in classical logic, so the connection between provability and metaprogramming is ini-
tially not so clear, since classical logic has no computational interpretation. However, intuitionistic logic
has a deep connection to computation via the Curry-Howard Correspondence. We introduced Martin-
Löf’s intuitionistic type theory (MLTT), which fully leverages the Curry-Howard correspondence be-
tween logical proofs and functional programs. Re-establishing Gödel’s theorems in MLTT reveals the
connection between provability and metaprogramming.

In the next chapter, we put this connection between provability and metaprogramming to the test. In
the metaprogramming literature, it is quite well-known that staged metaprogramming has some modal
qualities. Independently of this, the use of modal logic to study provability has also been established.
Under the framework of modal logic, we compared and contrasted the two notions of provability and
staged metaprogramming, discovering an incompatibility in the form of the evaluation principle, ex-
pressed modally as axiom (T) �� � �. The evaluation principle is key as it allows metaprograms to
be used, rather than just to be reasoned about. This means that to incorporate metaprogramming into
MLTT and justify it with a provability interpretation, we will have to sacrifice the ability to actually use
the metaprograms.

Our work culminates by showing that a restricted version of the staged metaprogramming primitives can
already be simulated in terms of provability inMLTT. Hence, the primitives simply serve as a convenient
way to access the provability constructions. Unfortunately, in order to remain faithful to the provability
semantics, we had to bend over backwards by also heavily restricting the computation rules of the theory.
Ultimately, this makes the theory very impractical and unergonomic. Together with the aforementioned
incompatibility, this suggests that while provability and metaprogramming share some similarities, prov-
ability is not a good way to justify the principles of practical metaprogramming. Ultimately, it is best if
the two concepts are kept distinct.

8.2 Future Work

Establishing The HBL Conditions For ProvMLTT In proving the second incompleteness theorem of
MLTT, we simply assumed that ProvMLTT satisfies the Hilbert-Bernays-Löb conditions. It is not neces-
sarily true that ProvMLTT satisfies these conditions, since a proof of the satisfaction entails working with
the fine details of the encoding of derivations and the definition of prf. In fact, even in PAmany alternate
definitions of ProvPA fail to satisfy some of the HBL conditions (e.g. Rosser’s definition [15, 56]). Some
additional work is warranted to establish that the HBL conditions hold of ProvMLTT.

Fleshing Out The Provability Semantics Due to time constraints, we could not properly flesh out
the provability semantics. In particular, we are missing a treatment of how to elaborate contexts, and we
did not at all explore the intricacies of how to build the proof of prfMLTT (p"q , pXq , p�q).
Extending the Provability Semantics to Modal Axiom (4) In principle, provability also validates
axiom (4) �� � ���. This suggests we can extend the provability semantics to cover this axiom as

59

well. In metaprogramming terms, axiom (4) corresponds to a relaxation of the level restriction, allowing
variables from any lower level to be spliced, rather than only exactly one level below.

Contextual Modal Type Theory The requirement that a term of �� be the code of a closed term
with type � is an awkward one, as we saw in the example in the evaluation. Contextual Modal Type
Theory (CMTT) [57, 58] explores a type [k]�, whose terms are codes of terms with type � under the
context k . We may consider an extension of CMTT to dependent types, as we did with �. This can be
done under the framework of graded modal dependent type theory [59], where a graded modality is a
modality indexed by a monoid. At least superficially, [k]� resembles a graded monoid since context lists
are monoids1.

Categorical Semantics In [60], Kavvos investigated a generalisation of Gödel codes to a categorical
se�ing. We may consider a generalisation of the provability semantics to consider these categories with
their own notion of code. This is not likely to work however, considering how di�icult and finicky it was
just to establish the provability semantics forMLTT.

The following two points are more speculative, pertaining to modal logic more generally.

�asiquotes & Splices Beyond Metaprogramming We were able to derive a meaningful metapro-
gramming interpretation of Fitch’s general system of natural deduction for modal logic. The opening
of a strict subderivation corresponds to quasiquoting while splicing corresponds to import rules. From
the viewpoint of the possible world semantics of modal logic, a strict subderivation corresponds to "li�-
ing" the reasoning over an arbitrary possible world. This suggests quasiquotes take on the same role in
the wider context of modal logic. It may be worth looking into other interpretations modal logic and
importing them to the intuitionistic se�ing to observe the role played by quotes and splices.

Modal Possibility Our work is purely pre-occupied with the necessity modality �. However, modal
logic is traditionally concerned also with the possibility modality ♦. In classical modal logic, ♦ can be
defined as ¬�¬. However, just as the quantifiers are no longer interdefinable in intuitionistic logic, ♦ and
� also lose their interdefinability. It would be interesting to identify whether ♦ can be incorporated into
the modal lambda calculus. As a corollary of this, we may obtain a metaprogramming interpretation for
♦.

1The free monoid structure is a list.

60

A ` Lemmas For EstablishingTheRepresentabil-
ity of Recursive Functions

1.1 Proof of Lemma 4.21

In the following proof, we will utilise the fact that terms of the following types exist. Since they are not
metatheorems, they can easily be proven in a theorem prover such as Agda. Hence, we will omit the
proofs.

Lemma A.1
1. succ-cong :

∏
G~:N (s(G) = s(~) � G = ~)

2. plus-symm :
∏

G~:N G + ~ = ~ + G

3. plus-eq-zero :
∏

G~:N G + ~ = z � (G = z × ~ = z)

4. split :
∏

G~:N (G < s(~) � (G < ~ + G = ~))
Assume G and ~ as implicit arguments since their values can be inferred from the third argument.

The proof is by induction (in the metatheory) on =. We consider two base cases = = 0 and = = 1, since
the type is di�erent for = = 0.

Base Case (= = 0)We do this by induction on the definition of G < z. The definition of G < z constitutes
a nonzero number : that acts as the di�erence between G and z. We case split on : - if : is zero then
we have a contradiction since we assumed it to be nonzero. If it is a successor, then we also derive a
contradiction since we have that G plus : equals zero, which means : must be zero.

canon0 :
∏

G :N G < z � 0

canon0 G 〈z, 〈?1, ?2〉〉 :≡ ?1 reflz
canon0 G 〈s(:), 〈?1, ?2〉〉 :≡ obs-of-id (c2 (plus-eq-zero ?2))

BaseCase (= = 1) For this case, we case split on G . When G is zero, then its trivial. When G is the successor,
i.e. s(G), we have that ?2 : plus s(G) : = s(z). Since addition is symmetrical, we have plus : s(G) = s(z),
which is definitionally equal to s(plus : G) = s(z). Hence, plus : G = z which means G = z. Here
trans :

∏
G~I:N (G = ~ � ~ = I � ~ = I) is the transitivity of equality [31]. The first three arguments are

assumed to be implicitly given since they can be inferred from the next two arguments.

canon1 :
∏

G :N G < s(z) � G = z

canon1 z ? :≡ reflz
canon1 s(G) 〈:, 〈?1, ?2〉〉 :≡ c2 (plus-eq-zero (succ-cong (trans (plus-symm : (s(G))) ?2))

Inductive Case (= = = + 1) We have here the inductive hypothesis canon= :
∏

G :N (G < = � (G =

0+ . . .+G = = − 1)). For the inductive case, we simply have to case-split on G < = + 1. If G < =, then apply
the IH. Otherwise, if G = = we already have the answer.

canon=+1 :
∏

G :N (G < = + 1 � (G = 0 + . . . + G = = − 1 + G = =))
canon=+1 G ? :≡ ind+ (ℎ< .canon= ℎ<, ℎ=.in2 (ℎ=), split ?)

61

1.2 Proof of Lemma 4.22

As with Lemma 4.21, we have to assume some simple lemmas that are fairly tedious but may be proven
in a theorem prover such as Agda.

Lemma A.2
1. zero-plus-id :

∏
G :N z + G = G

2. ap :
∏

5 :N�N
∏

G~:N G = ~ � 5 G = 5 ~

3. succ-plus :
∏

G~:N plus s(G) ~ = s(plus G ~)
For 2. assume 5 , G and ~ as implicit arguments since their values can be inferred from the next
arguments.

trichotomy :
∏

G~:N ((~ < G + G < ~) + G = ~)
trichotomy z z :≡ in2 (reflz)
trichotomy z s(~) :≡ in1 (in2 (〈s(~), 〈_A . obs-of-id A, zero-plus-id s(~)〉〉))
trichotomy s(G) z :≡ in1 (〈s(G), 〈_A . obs-of-id A, zero-plus-id s(G)〉〉)
trichotomy s(G) s(~) :≡ ind+ (_.(s(~) < s(G) + s(G) < s(~)) + s(G) = s(~),

?1.in1 (ind+ (_.s(~) < s(G) + s(G) < s(~),
?11.in1 (helper ~ G ?11),
?12.in2 (helper G ~ ?12),
?1)),

?2.in2 (ap ?2),
trichotomy G ~)

where

helper :
∏

G~:N (G < ~ � s(G) < s(~))
helper 〈:, 〈?:, ?~〉〉 :≡ 〈:, 〈?:, trans (succ-plus G :) (ap ?~)〉〉

In the last case, the proof is simply spli�ing the recursive case trichotomy G ~. If it is ~ < G then we prove
s(~) < s(G). If it is G < ~ then we prove s(G) < s(~). Finally, if G = ~ then we prove s(G) = s(~).

62

B ` MLTTlvl

2.1 Proof of Theorem 6.4

The proof proceeds by induction on " , generalising Γ, : and �. For the inductive cases, the inductive
hypothesis is therefore:

(IH) For all Γ, : , �, if Γ `_K " : � then L Γ M | |Γ | |+: ` | |Γ | |+:
_lvl

" : �.

We show some of the important non-trivial cases of the proof. As we shall see, the proof is rather formu-
laic.

1. Base Case (G) Suppose Γ ` G : �. Then this means Γ = Γ1, G : �, Γ2 where LOCK ∉ Γ2. Hence, | |Γ1 | | =
| |Γ | | and | |Γ2 | | = 0. From this, we may infer that L Γ M | |Γ | |+: = L Γ1 M | |Γ | |+: , G : (�, | |Γ | | +:), L Γ2 M | |Γ | |+: ,
and so may apply the (Ass) rule to derive L Γ M | |Γ | |+: ` | |Γ | |+: G : �.

2. Inductive Case (_G. ") Suppose Γ ` _G. " : �. Then we can infer that � = �1 � �2 and
Γ, G : �1 ` " : �2. Applying the IH, we find that L Γ, G : �1 M | |Γ | |+: ` | |Γ | |+: " : �2 which is equivalent
to L Γ M | |Γ | |+: , G : (�1, | |Γ | |+:) ` | |Γ | |+: " : �2. Applying (� I), we obtain L Γ M | |Γ | |+: ` | |Γ | |+: _G. " : �.

3. Inductive Case È"É Suppose Γ ` È"É : �. Then we can infer that � = ��1 and Γ,LOCK `
" : �1. Applying the IH, we find that L Γ,LOCK M | |Γ | |+:+1 ` | |Γ | |+:+1 " : �1 which is equivalent to
L Γ M | |Γ | |+: ` | |Γ | |+:+1 " : �1. Applying (�I), we obtain L Γ M | |Γ | |+: ` | |Γ | |+: È"É : �.

4. Inductive Case $(") Suppose Γ ` $(") : �. Then we can infer that Γ = Γ1,LOCK, Γ2 where
LOCK ∉ Γ2, and that Γ1 ` " : ��. Applying the IH, we find that L Γ1 M | |Γ1 | |+: ` | |Γ1 | |+: " : ��
which we can apply (�E) to, obtaining L Γ1 M | |Γ1 | |+: ` | |Γ1 | |+:+1 $(") : �. We can weaken this into
L Γ1 M | |Γ1 | |+: , L Γ2 M | |Γ1 | |+:+1 ` | |Γ1 | |+:+1 $(") : �, which is equivalent to L Γ1,LOCK, Γ2 M | |Γ1 | |+:+1 ` | |Γ1 | |+:+1
$(") : �. But of course, | |Γ1 | | + : + 1 = | |Γ | | + : since Γ contains one more lock than Γ1.

5. etc.

2.2 Proofs for Lemma 6.7

Lemma 6.7.1

For the full proof, we actually have to prove the following two lemmas by mutual induction on the typing
and definitional equality judgement.

Lemma B.1
1. If Γ `= " : � then Γ ctx.

2. If Γ `= " ≡ # : � then Γ ctx.

All the inductive cases for our newly added rules are actually trivial since they don’t manipulate the
context. This means we can simply apply the inductive hypothesis to obtain the goal.

Lemma 6.7.2

As with Lemma 6.7.1, we actually have to perform mutual induction.

63

Lemma B.2
1. If Γ `= " : � then Γ `= � : U8 .

2. If Γ `= " ≡ # : � then Γ `= � : U8 .

The case for (�F) is trivial, since U8 is always a well-formed type. For (�I), we simply need to apply the
inductive hypothesis to obtain Γ `=+1 � : U8 and apply (�F). For (�E), the inductive hypothesis gives
Γ `= �� : U8 , so we can infer that Γ `=+1 � : U8 .

For the congruence rules of ÈÉ, $() and �, the proof follows closely from (�I), (�E) and (�F) respectively,
while the computation rule for � trivially follows from the inductive hypothesis.

Lemma 6.7.3 (Weakening)

The proof is by mutual induction over all three typing judgements. We have to

Lemma B.3
1. If Γ,Δ `= " : � and Γ `< � : U8 , then for any fresh variable G not occuring in Γ nor Δ,

Γ, G : (�,<),Δ `= " : �.

2. If Γ,Δ `= " ≡ # : � and Γ `< � : U8 , then for any fresh variable G not occuring in Γ nor Δ,
Γ, G : (�,<),Δ `= " ≡ # : �.

3. If Γ,Δ ctx and Γ `< � : U8 , then for any fresh variable G not occuring in Γ nor Δ, Γ, G :
(�,<),Δ ctx.

As with Lemma 6.7.1, this trivially follows from the inductive hypothesis for all the newly added rules in
MLTTlvl since none of them manipulate the context.

Lemma 6.7.4 (Substitution)

Lemma B.4
1. If Γ, G : (�,<),Δ `= " : � and Γ `< # : � then Γ,Δ[# /G] `= " [# /G] : � [# /G].

2. If Γ, G : (�,<),Δ `= "1 ≡ "2 : � and Γ `< # : � then Γ,Δ[# /G] `= "1 [# /G] ≡ "2 [# /G] :
� [# /G].

3. If Γ, G : (�,<),Δ ctx and Γ `< # : � then Γ,Δ[# /G] ctx.

For our new rules, this also trivially follows from the inductive hypothesis, and an unfolding of the def-
inition of substitution. For example, for (�E), the inductive hypothesis gives us Γ,Δ[# /G] `= " [# /G] :
(��) [# /G]. However we know (��) [# /G] is by definition equivalent to �(� [# /G])], so we can simply
re-apply (�E) to obtain Γ,Δ[# /G] `= $(" [# /G]) : � [# /G]. Once again, $(" [# /G]) is equivalent to
$(") [# /G].
We note here that weakening is needed to prove the cases for some of the other rules.

Lemma 6.7.5 (Exchange)

Lemma B.5
1. If Γ, G : (�,<), ~ : (�, =),Δ `: " : � and Γ `= � : U8 , then Γ, ~ : (�, =), G : (�,<),Δ `: " : � .

64

2. If Γ, G : (�,<), ~ : (�, =),Δ `: " ≡ # : � and Γ `= � : U8 , then Γ, ~ : (�, =), G : (�,<),Δ `: " ≡
: � .

3. If Γ, G : (�,<), ~ : (�, =),Δ ctx and Γ `= � : U8 , then Γ, ~ : (�, =), G : (�,<),Δ ctx.

As with Lemma 6.7.3, this trivially follows from the inductive hypothesis for all the newly added rules in
MLTTlvl since none of them manipulate the context.

We note here that weakening is needed to prove the cases for some of the other rules.

2.3 Proof of Theorem 6.15 (Preservation)

The proof is by induction on Γ `= " ≡ # : �. We prove only the cases for the newly added rules, since
the proof will not have changed for the remaining rules.

1. Base Case Γ `1 " : � (�C)
Γ `1 $(È"É) ≡ " : �

We immediately already have Γ `1 " : � for the LHS. From this, we can simply construct the
following derivation for the RHS

Γ `1 " : �
Γ `0 È"É : ��
Γ `1 $(È"É) : �

2. Inductive Case Γ `=+1 � ≡ �′ : U8

Γ `= �� ≡ ��′ : U8

Simply apply the inductive hypothesis followed by the (�F) rule to both the LHS and RHS.

3. Inductive Case Γ `=+1 " ≡ " ′ : �
Γ `= È"É ≡ È" ′É : ��

Simply apply the inductive hypothesis followed by (�I) to both the LHS and RHS.

4. Inductive Case Γ `= " ≡ " ′ : ��
Γ `=+1 $(") ≡ $(" ′) : �

Apply the inductive hypothesis followed by (�E) to both the LHS and RHS.

2.4 Proof of Theorem 6.17 (Progress)

The proof is by induction on ∗ `= " : �. For brevity, we show only the cases for the newly added rules of
MLTTlvl.

1. Inductive Case Γ `=+1 � : U8 (�F)
Γ `= �� : U8

By the inductive hypothesis, either � normal=+1 or ∗ `= � {V � : U8 . In the former case, it
immediately follows that �� normal= . In the la�er case, we can simply apply the congruence rule
for �.

2. Inductive Case Γ `=+1 " : � (�I)
Γ `= È"É : ��

By the inductive hypothesis, either " normal=+1 or ∗ `= " {V # : �. In the former case, it
immediately follows that È"É normal= . In the la�er case, we can simply apply the congruence
rule for quotes.

65

3. Inductive Case Γ `= " : �� (�E)
Γ `=+1 $(") : �

By the inductive hypothesis, either " normal= or ∗ `= " {V # : ��. In the la�er case, then
we can simply apply the congruence rule for splices. In the former case, we need to do a further
case split. Due to its type, we know that either " = È" ′É or some destructor term. It cannot be a
variable since" is well-typed under the empty context.

If " = È" ′É, and = = 0, then we can use computation rule for � to show that $(È" ′É) reduces.
Otherwise, $(È" ′É) normal=+1, which works since = > 0.
If " is some destructor, then = > 0 since it cannot be a neutral term without a freely occuring
variable. Hence, $(") normal=+1 again.

4. etc.

66

References
[1] Leonardo de Moura et al. “The Lean Theorem Prover (System Description)”. In: Automated Deduc-

tion - CADE-25. Springer International Publishing, 2015, pp. 378–388.

[2] Ulf Norell. “Towards a practical programming language based on dependent type theory”. PhD
thesis. Chalmers University of Technology and Göteborg University, 2007.

[3] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development: Coq’Art:
The Calculus of Inductive Constructions. en. Springer Science & Business Media, Mar. 2013.

[4] Per Martin-Löf. “An intuitionistic theory of types”. In: Twenty-five years of constructive type theory
(Venice, 1995). Ed. by Giovanni Sambin and Jan M Smith. Vol. 36. Oxford Logic Guides. Oxford
University Press, 1998, pp. 127–172.

[5] Philip Wadler. “Propositions as types”. In: Commun. ACM 58.12 (Nov. 2015), pp. 75–84.

[6] Gabriel Ebner et al. “A metaprogramming framework for formal verification”. In: Proc. ACM Pro-
gram. Lang. 1.ICFP (Aug. 2017), pp. 1–29.

[7] Tim Sheard. “Accomplishments and Research Challenges in Meta-programming”. In: Semantics,
Applications, and Implementation of Program Generation. Springer Berlin Heidelberg, 2001, pp. 2–
44.

[8] Richard Zach. “Hilbert’s Program”. In: The Stanford Encyclopedia of Philosophy. Ed. by Edward N
Zalta. Fall 2019. Metaphysics Research Lab, Stanford University, 2019.

[9] Kurt Gödel. “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Sys-
teme I”. In: Monatshe�e für Mathematik und Physik 38.1 (Dec. 1931), pp. 173–198.

[10] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. en. College Publications, 2012.

[11] Gerhard Gentzen. “Untersuchungen über das logische SchlieSSen. I”. In:Math. Z. 39.1 (Dec. 1935),
pp. 176–210.

[12] GerhardGentzen. “Untersuchungen über das logische SchlieSSen II”. In:Math. Z. 39 (1935), pp. 405–
431.

[13] Giuseppe Peano. Arithmetices Principia, Nova Methodo Exposita. Libreria Bocca, 1889.

[14] Richard Zach. Incompleteness and Computability: An Open Introduction to Gödel’s Theorems. Open
Logic Project, 2019.

[15] Barkley Rosser. “Extensions of some theorems of Gödel and Church”. In: J. Symbolic Logic 1.3 (Sept.
1936), pp. 87–91.

[16] Peter Smith. Introduction to Godel’s Theorems, An. Cambridge Introductions to Philosophy. en. Cam-
bridge University Press, May 2014.

[17] DHilbert and P Bernays. “Grundlagen derMathematik II”. In: J. Symbolic Logic 39.2 (1974), pp. 357–
357.

[18] M H Löb. “Solution of a Problem of Leon Henkin”. In: J. Symbolic Logic 20.2 (1955), pp. 115–118.

[19] Mark van A�en. “The Development of Intuitionistic Logic”. In: The Stanford Encyclopedia of Phi-
losophy. Ed. by Edward N Zalta. Summer 2022. Metaphysics Research Lab, Stanford University,
2022.

[20] A M Turing. “On computable numbers, with an application to the entscheidungsproblem”. en. In:
Proc. Lond. Math. Soc. s2-42.1 (1937), pp. 230–265.

[21] Alonzo Church. “A Set of Postulates for the Foundation of Logic”. In:Ann.Math. 33.2 (1932), pp. 346–
366.

[22] Morten Heine Sørensen and Pawe Urzyczyn. Lectures on the Curry-Howard Isomorphism. en. Else-
vier, 2006.

[23] ArendHeyting. “Die intuitionistischeGrundlegung derMathematik”. In: Erkenntnis 2 (1931), pp. 106–
115.

67

[24] A Heyting. Mathematische Grundlagenforschung Intuitionismus Beweistheorie. Springer Berlin Hei-
delberg, 1934.

[25] A Kolmogoro�. “Zur Deutung der intuitionistischen Logik”. In:Math. Z. 35.1 (Dec. 1932), pp. 58–65.

[26] Ste�en van Bakel. Type Systems for Programming Languages. Online. 2016.

[27] Alonzo Church. “A formulation of the simple theory of types”. In: J. Symbolic Logic 5.2 (June 1940),
pp. 56–68.

[28] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre
supérieur. Éditeur inconnu, 1972.

[29] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathemat-
ics. Institute for Advanced Study: h�ps://homotopytypetheory.org/book, 2013.

[30] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. “Observational equality, now!” In:
Proceedings of the 2007 workshop on Programming languages meets program verification. Freiburg
Germany: ACM, Oct. 2007.

[31] Egbert Rijke. Introduction to Homotopy Type Theory. Online. 2019.

[32] Martin Hofmann. “Extensional concepts in intensional type theory”. en. PhD thesis. July 1995.

[33] Thomas Streicher. “Investigations Into Intensional Type Theory”. PhD thesis. Ludwig Maximilian
University of Munich, 1993.

[34] Jesper Cockx, Dominique Devriese, and Frank Piessens. “Pa�ern matching without K”. In: Pro-
ceedings of the 19th ACM SIGPLAN international conference on Functional programming. ICFP ’14.
Gothenburg, Sweden: Association for Computing Machinery, Aug. 2014, pp. 257–268.

[35] Cubical compatible — Agda 2.6.3 documentation. en. https : / / agda . readthedocs . io / en /
latest/language/cubical-compatible.html. Accessed: 2022-6-3.

[36] James Garson. “Modal Logic”. In: The Stanford Encyclopedia of Philosophy. Ed. by Edward N Zalta.
Summer 2021. Metaphysics Research Lab, Stanford University, 2021.

[37] Rasmus Rendsvig and John Symons. “Epistemic Logic”. In: The Stanford Encyclopedia of Philosophy.
Ed. by Edward N Zalta. Summer 2021. Metaphysics Research Lab, Stanford University, 2021.

[38] Paul McNamara and Frederik Van De Pu�e. “Deontic Logic”. In: The Stanford Encyclopedia of Phi-
losophy. Ed. by Edward N Zalta. Spring 2022. Metaphysics Research Lab, Stanford University, 2022.

[39] Patrick Blackburn, Maarten de Rijke, and Yde Venema.Modal Logic. Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, 2001.

[40] Sergei N Artemov and Lev D Beklemishev. “Provability Logic”. In: Handbook of Philosophical Logic,
2nd Edition. Ed. by DMGabbay and F Guenthner. Dordrecht: Springer Netherlands, 2005, pp. 189–
360.

[41] Robert M Solovay. “Provability interpretations of modal logic”. In: Israel J. Math. 25.3 (Sept. 1976),
pp. 287–304.

[42] W V�ine. Mathematical Logic. Cambridge: Harvard University Press, 1940.

[43] Rowan Davies and Frank Pfenning. “A modal analysis of staged computation”. en. In: J. ACM 48.3
(May 2001), pp. 555–604.

[44] Frederic Brenton Fitch. Symbolic Logic: An Introduction. en. Ronald Press Company, 1952.

[45] Frederic B Fitch. “Natural Deduction Rules for Obligation”. In: Am. Philos. Q. 3.1 (1966), pp. 27–38.

[46] Melvin Fi�ing. “Basic modal logic”. In: Handbook of logic in artificial intelligence and logic program-
ming (vol. 1). USA: Oxford University Press, Inc., Aug. 1993, pp. 368–448.

[47] Vaj Tijn Borghuis. “Coming to terms with modal logic : on the interpretation of modalities in typed
lambda-calculus”. en. PhD thesis. Technische Universiteit Eindhoven, 1994.

[48] Simone Martini and Andrea Masini. “A Computational Interpretation of Modal Proofs”. In: Proof
Theory of Modal Logic. Ed. by Heinrich Wansing. Vol. 2. Applied Logic Series. Springer Dordrecht,
Dec. 1995, pp. 213–241.

68

https://agda.readthedocs.io/en/latest/language/cubical-compatible.html
https://agda.readthedocs.io/en/latest/language/cubical-compatible.html

[49] Ranald Clouston. “Fitch-Style Modal Lambda Calculi”. In: Lecture Notes in Computer Science. Lec-
ture notes in computer science. Cham: Springer International Publishing, 2018, pp. 258–275.

[50] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. “Implementing a modal dependent type the-
ory”. In: Proc. ACM Program. Lang. 3.ICFP (July 2019), pp. 1–29.

[51] Sergei N Artemov. “Explicit Provability and Constructive Semantics”. In: Bull. Symbolic Logic 7.1
(2001), pp. 1–36.

[52] G A Kavvos. “Intensionality, Intensional Recursion, and the Gödel-Löb axiom”. In: ArXiv (2017).

[53] Walid Taha and Tim Sheard. “Multi-stage programming with explicit annotations”. In: Proceedings
of the 1997 ACM SIGPLAN symposium on Partial evaluation and semantics-based program manipula-
tion - PEPM ’97. Amsterdam, The Netherlands: ACM Press, 1997.

[54] Ningning Xie et al. “Staging with class: a specification for typed template Haskell”. en. In: Proc.
ACM Program. Lang. 6.POPL (Jan. 2022), pp. 1–30.

[55] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[56] Toshiyasu Arai. “Derivability conditions on Rosser’s provability predicates”. en. In: Notre Dame
Journal of Formal Logic 31.4 (Sept. 1990), pp. 487–497.

[57] Aleksandar Nanevski, Frank Pfenning, and Brigi�e Pientka. “Contextual modal type theory”. en.
In: ACM Trans. Comput. Log. 9.3 (June 2008), pp. 1–49.

[58] Aleksandar Nanevski. “Meta-programming with names and necessity”. In: Proceedings of the sev-
enth ACM SIGPLAN international conference on Functional programming. ICFP ’02. Pi�sburgh, PA,
USA: Association for Computing Machinery, Sept. 2002, pp. 206–217.

[59] BenjaminMoon, Harley Eades III, and Dominic Orchard. “GradedModal Dependent Type Theory”.
In: Programming Languages and Systems. Springer International Publishing, 2021, pp. 462–490.

[60] G A Kavvos. “On the Semantics of Intensionality”. en. In: Foundations of So�ware Science and Com-
putation Structures: 20th International Conference, FOSSACS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of So�ware, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings. Springer Berlin Heidelberg, Mar. 2017, pp. 550–566.

69

	Introduction
	Outline of the Report
	Contributions

	Gödel's Incompleteness Theorems
	First-order Logic
	The Syntax of First-order Logic
	Natural Deduction
	Propositional Logic

	Metaprogramming in the Theory of Arithmetic PA
	The Axioms of PA
	Encoding Formulas as Numbers
	Representing Functions & Relations in PA

	Gödel's Incompleteness Theorems

	The Curry-Howard Correspondence
	The BHK Interpretation
	Lambda Calculus
	The Correspondence For ->
	Extending The Correspondence to Other Connectives of IPL

	Martin-Löf's Intuitionistic Type Theory
	Type Universes
	The Judgements of MLTT
	Well-formedness of Contexts
	Definitional Equality

	Inductive Types
	The Type of Natural Numbers
	Recasting Some Propositional Connectives as Inductive Types
	The Identity Type

	Quantifiers as Dependent Type Formers
	Incompleteness, Revisited
	Pattern Matching Definitions
	Representing Recursive Functions & Relations
	The Incompleteness of MLTT

	Modal Logics for Provability & Metaprogramming
	Axiomatic Deduction Systems for Modal Logic
	Provability Modal Logic
	Modal Type Systems for Staged Metaprogramming
	Staged Metaprogramming
	The Modal Analysis of Davies & Pfenning
	Fitch-Style Natural Deduction for Modal Logic

	The Incompatibility Between Provability and Metaprogramming

	The Provability Semantics of Metaprogramming in Martin-Löf's Type Theory
	Staging Levels
	Simple Types
	Dependent Types

	Provability Semantics
	A First Attempt
	Splice Environments
	The Elaboration Procedure
	A Simple Example

	Type Soundness of MLTT-lvl
	Computation and Congruence Rules of ☐
	Progress & Preservation

	Evaluation
	Incompleteness of MLTT
	MLTT-lvl
	The Provability Semantics
	Expressivity of MLTT-lvl

	Ethical Considerations

	Conclusion
	Summary
	Future Work

	Lemmas For Establishing The Representability of Recursive Functions
	Proof of Lemma 4.21
	Proof of Lemma 4.22

	MLTT-lvl
	Proof of Theorem 6.4
	Proofs for Lemma 6.7
	Proof of Theorem 6.15 (Preservation)
	Proof of Theorem 6.17 (Progress)

	References

